FUNDAMENTAL LIMITS FOR DISTRIBUTED LOSSY INTERACTIVE FUNCTION COMPUTATION

Solmaz Torabi, and John MacLaren Walsh
Dept. of Electrical and Computer Engineering
Drexel University

Abstract

In lossy interactive function computation, a series of encoders serially broadcast messages encoded from their observations and previously overheard messages in a round robin fashion, with the aim of enabling a decoder, the central estimation officer (CEO), having access to these messages, to compute a function of all of their local observations up to a given fidelity criterion. Of great interest in this problem is the rate distortion region, describing all possible vectors of rates for which their exist encoders and decoders not exceeding a specified distortion. This paper determines the rate distortion region for several variants of this lossy interactive function computation model in which the observations at the encoders are dependent. First, a rate distortion expression is given for an interactive lossy variant of the Körner Marton problem, in which the function the CEO aims to compute is the binary sum of the observations at each of two encoders observing doubly symmetric binary sources. Building from this result, the rate distortion region for a far more general model in which the CEO is equipped with a side information, and the observations at the encoders need only be conditionally independent given this side information, is determined.

Index Terms- Lossy Compression, function computation, interactive communication, Rate-Distortion

1. INTRODUCTION

With the growing attention to efficient computation for rapid learning from massive datasets and the design of large remote sensing systems, it has become increasingly relevant to understand fundamental limits for distributed function computation. In distributed function computation, a series of terminals encode local observations into messages with the aim of enabling another terminal, the central estimation officer, to compute a function of their collected observations. Multiple variants of this problem have been considered in the literature, and we review only a few of the most closely related information theoretic ones here. In these information theoretic variants, each terminal observes a independently and identically distributed sequence of discrete random variable observations, and the goal is to enable the CEO to compute
the function across the observations of different terminals for each element of the sequence. Of particular interest is the region of message rates, measured in bits per sequence element, which enable the function to be computed. This literature can roughly be characterized along three axes: 1) whether or not the encoders must send their messages in one-shot fashion, or if they are allowed to overhear other messages and interact, 2) whether the function must be computed with arbitrarily small probability of error or within an upper bound on average element-wise distortion, and 3) whether or not the observations of different encoders are independent. For non-interactive lossless computation, an important early result [1] established the first fundamental lossless theorem for a point to point case where a function of two sources are reconstructed with one source being uncoded and available to the decoder. This was further generalized to a distributed case [2]. However, the generalization is not yet completely solved for a general function of arbitrary correlated sources [3]. Efforts have been, since then, extended to studying special correlation among the sources [4], and computing special functions [5]. An especially early canonical instance of the one-shot lossless variant of the problem was investigated by Körner and Marton in [5], who provided a method for losslessly computing the binary sum of doubly symmetric binary sources (DSBS) as depicted in Fig. 2 without the need to communicate the sources directly. More broadly, [6] provided inner and outer bound for the rate region of the sources that have neither independence nor symmetric property. If the sources are allowed to interact, building from a rate distortion region for a point to point interactive case [7], the rate region for interactive lossless computation has been obtained in [8] for independent sources. [9] considered this problem in a lossy regime with presence of the side information, which subsumes the model in [8]. This paper investigates a variant of this lossy interactive function computation with dependent observations, and proves the rate distortion region under certain conditions.

Another main source of difficulty after obtaining the rate distortion expression is computing the region, which usually admits cardinality bounds on its auxiliary random variables. If the compressed messages from which the function must be computed, are sent in a one-shot, non-interactive manner, and

Fig. 1: Three-node lossy interactive function computation
the observations are independnet, [10] admits a Blahut Arimoto type algorithm to iteratively compute the rate distortion region. [8] provides a convex geometric approach algorithm to compute the region for losslessly reproducing a function of distributed independent sources. However, from a practical standpoint, even for small problems, it uses a large series of convex hulls, which is unlikely to be computationally feasible in many contexts. Inspired by this, in addition to the main contribution of this paper, which is a derivation the optimal rate distortion region expression for a new problem, we have included a simplification evaluation of it for binary sources and messages.

After more precisely defining the problem in $\S 2$, we begin by finding the rate-distortion region for lossy interactive Körner-Marton type problem. We then explicitly evaluate an achievable region for computing the binary sum of two DSBS (§3). Building on this result, in $\S 4$ we consider a harder more general model with presence of the side information, such that given the side information the sources become independent, and a general function of all the sources needs to be computed at the decoder. The main result in the paper shows that the side information can optimally handle the randomness that is common between the sources, therefore, the optimal rate distortion region is can be derived in this conditionally independent case. Finally, an example with binary sources is provided (§4.1).

2. PROBLEM FORMULATION

Consider a network with two source terminals and a single sink terminal as depicted in Fig. 1. Terminal $j=1,2$ observes a random sequence $\boldsymbol{X}_{j}^{N}=\left(X_{j}(1), \ldots, X_{j}(N)\right) \in$ \mathcal{X}_{j}^{N}. The sink node, the central estimation officer (CEO), observes a side information sequence $X_{3}(n), n \in[N]$ which is assumed to be correlated with the source variables. The random vectors $X_{1: 3}(n)=\left(X_{1}(n), X_{2}(n), X_{3}(n)\right)$ are iid in time $n \in[N]$, and, $X_{1}(n) \leftrightarrow X_{3}(n) \leftrightarrow X_{2}(n)$. The sink terminal wishes to compute $f: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \mathcal{X}_{3} \rightarrow \mathcal{Z}$ in a lossy manner elementwise, estimating the sequence $\boldsymbol{Z}^{N}=$
$(Z(1), \ldots, Z(N))$ with $Z(n)=f\left(X_{1}(n), X_{2}(n), X_{3}(n)\right)$. Let $d: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \mathcal{X}_{3} \times \mathcal{Z} \rightarrow \mathbb{R}^{+}$be a fidelity criterion for this function computation, yielding the block distortion metric

$$
d^{(N)}\left(\boldsymbol{X}_{1: 3}^{N}, \hat{\boldsymbol{Z}}^{N}\right)=\frac{1}{N} \sum_{n=1}^{N} d\left(x_{1}(n), x_{2}(n), x_{3}(n), \hat{z}(n)\right)
$$

In order to enable the CEO to estimate the function computation, the nodes take turns broadcasting messages which are perfectly received at both the other nodes and the CEO. The communication is initiated by node 1 , and at round i, node $j=((i-1) \bmod 2)+1$ sends a message $M_{i} \in \mathcal{M}_{i}$, using the encoding function $\psi_{i}: \mathcal{X}_{j}^{N} \times \bigotimes_{k=1}^{i-1} \mathcal{M}_{k} \rightarrow \mathcal{M}_{i}$ to encode its observations based on the previously overheard messages. After t rounds of communication, the CEO estimates the function sequence based on the messages it has received and the side information using the decoding function $\phi: \mathcal{X}_{3}^{N} \times \bigotimes_{k=1}^{t} \mathcal{M}_{k} \rightarrow \mathcal{Z}^{N}$.
Definition 1. A rate-distortion tuple $(\mathbf{R}, D)=\left(R_{1}, R_{2}, \ldots, R_{t}, D\right)$ is admissible for t-message interactive function computation, if $\forall \epsilon>0$, and $\forall N>n(\epsilon, t)$, there exist encoders $\psi_{i}, i \in$ $\{1, \ldots, t\}$ and a decoder ϕ with parameters $\left(t, N,\left|\mathcal{M}_{1}\right|, \ldots,\left|\mathcal{M}_{t}\right|\right)$ satisfying $\frac{1}{N} \log _{2}\left|\mathcal{M}_{i}\right| \leq R_{i} \forall i=1, \ldots, t$ and $\mathbb{E}\left[d^{(N)}\left(\boldsymbol{X}_{1: 3}^{N}, \hat{\boldsymbol{Z}}^{N}\right)\right] \leq$ $D+\epsilon$ with $\hat{\boldsymbol{Z}}^{N}=\phi\left(M_{1}, \ldots, M_{t}, \boldsymbol{X}_{3}^{N}\right)$.

Finally, define the collection of admissible rate and distortion vectors (\mathbf{R}, D) to be $\mathcal{R D}{ }^{t}$. We use this notations again in Section $\S 4$, where the complete characterization of the rate region of Fig. 1 is provided.

3. INTERACTIVE LOSSY KÖRNER-MARTON PROBLEM

Consider next a special case of this problem in Fig. 3, inspired by the Körner Marton problem, Fig. 2, in which we have two dependent sources, $X_{1}=X \sim \operatorname{Bern}(1 / 2)$, and $X_{2}=X+Z_{1}$ with $Z_{1} \sim \operatorname{Bern}\left(p_{1}\right)$ being independent of X, and the CEO wishes to compute the binary sum of the sources, $X_{1} \oplus X_{2}=Z_{1}$ losslessly. For this Körner-Marton problem in 2, it has been shown that to compute this function the set of rate required are $R_{1} \geq h(p)$, and $R_{2} \geq h(p)$, which improves upon the Slepian-Wolf rate region. This result was among one of the first examples that provided a fundamental limit of compression for computing a particular function without a need to communicate the sources in a non-interactive context. Fig. 3 shows an interactive lossy variant of Körner-Marton problem, where the binary sum should be computed subject to the Hamming distortion. Inspired from [4], since one source is a deterministic function of the other source and the decoder seeks to reproduce a function of the sources (rather than reproducing the sources itself as in [4]), with the function Z_{1}, being independent of one of the sources, the complete ratedistortion region can be characterized in Theorem 1.

Fig. 2: Körner-Marton Problem

Fig. 3: Lossy Interactive
Körner-Marton Problem

Fig. 4: Lossy Interactive Binary sum of two binary sources with presence of a side information

Theorem 1. For the model in Fig. 3 the complete characterization of the rate-distortion region can be derived as follows.

$$
\mathcal{R D}_{c}^{2}=\left\{\begin{array}{c|c}
(\mathbf{R}, D) & R_{1} \geq I\left(X ; U_{1}\right) \tag{1}\\
R_{2} \geq I\left(X \oplus Z_{1} ; U_{2} \mid U_{1}\right) \\
\mathbb{E}\left[d\left(Z_{1}, \hat{g}\left(U_{1,2}\right)\right)\right] \leq D \\
U_{1} \leftrightarrow X \leftrightarrow X \oplus Z_{1} \\
U_{2} \leftrightarrow X \oplus Z_{1}, U_{1} \leftrightarrow X
\end{array}\right\}
$$

Proof. The achievability proof follows from [9], so we only present the converse proof. We define the auxiliaries $U_{1}(n):=\left\{M_{1}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{2}^{n_{+}}\right\}, U_{2}(n):=M_{2}$. The rate for the first round can be lower bounded as

$$
\begin{align*}
R_{1} & \geq H\left(M_{1}\right) \geq I\left(\boldsymbol{X}_{1}^{N}, \boldsymbol{X}_{2}^{N} ; M_{1}\right) \\
& =\sum_{n=1}^{N} H\left(X_{1}(n) X_{2}(n)\right)-H\left(X_{1}(n) X_{2}(n) \mid M_{1} \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{2}^{n_{+}}\right) \\
& \stackrel{a}{\geq} \sum_{n=1}^{N} H\left(X_{1}(n)\right)-H\left(X_{1}(n) \mid M_{1} \boldsymbol{X}_{1}^{n_{-}} \boldsymbol{X}_{2}^{n_{+}}\right) \\
& =\sum_{n=1}^{N} I\left(X_{1}(n) ; U_{1}(n)\right) \tag{2}
\end{align*}
$$

In step a we used the positivity of the conditional mutual in-

Fig. 5: Markov constraints in Theorem 1. Observed random variables are shown in square.
formation. For the second round of communication:

$$
\begin{align*}
& R_{2} \geq H\left(M_{2}\right) \\
& \geq I\left(\boldsymbol{X}_{2}^{N} \boldsymbol{X}_{1}^{N} ; M_{2} \mid M_{1}\right) \\
&=\sum_{n=1}^{N} H\left(X_{1}(n) X_{2}(n) \mid M_{1} \boldsymbol{X}_{2}^{n_{+}} \boldsymbol{X}_{1}^{n_{-}}\right) \\
& \quad \quad-H\left(X_{1}(n) X_{2}(n) \mid M_{1} M_{2} \boldsymbol{X}_{2}^{n_{+}} \boldsymbol{X}_{1}^{n_{-}}\right) \\
& \geq \geq \sum_{n=1}^{N} H\left(X_{2}(n) \mid M_{1} \boldsymbol{X}_{2}^{n_{+}} \boldsymbol{X}_{1}^{n_{-}}\right)-H\left(X_{2}(n) \mid M_{1} M_{2} \boldsymbol{X}_{1}^{n_{-}} \boldsymbol{X}_{2}^{n_{+}}\right) \\
&=\sum_{n=1}^{N} I\left(X_{2}(n) ; U_{2}(n) \mid U_{1}(n)\right) \tag{3}
\end{align*}
$$

The Markov constraints $M_{1}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{2}^{n_{+}} \leftrightarrow X_{1}(n) \leftrightarrow$ $X_{2}(n)$, and $M_{2} \leftrightarrow X_{2}(n), M_{1}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{2}^{n_{+}} \leftrightarrow X_{1}(n)$ can be verified in Fig. 5. We use the graphical representation of the factorized distribution to verify the Markov properties, and exploit the conditional independence structure among the random variables. In this undirected graphs, the nodes are random variables appeared in the factorized distribution, and two nodes are connected if they appeared in the same factor. We have $X \leftrightarrow \mathcal{V} \leftrightarrow Y$ if every path between X, and Y contains some node $V \in \mathcal{V}$.

To prove the single letter characterization of the distortion, we use the converse assumption, that there exists a decoding function $\phi\left(M_{1}, M_{2}\right)$, with nth element ϕ_{n}, obeying

$$
\begin{equation*}
D \geq \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}\left[d\left(Z_{1}(n), \phi_{n}\left(M_{1}, M_{2}\right)\right)\right] \tag{4}
\end{equation*}
$$

Define the function $g: \mathcal{M}_{1} \times \mathcal{M}_{2} \rightarrow \mathcal{Z}_{1}^{N}$ with nth element g_{n}, to be the Bayes detector for $Z_{1}(n)$ from M_{1}, M_{2} :

$$
\begin{equation*}
g_{n}\left(M_{1}, M_{2}\right)=\arg \min _{\hat{z} \in \mathcal{Z}_{1}} \mathbb{E}\left[d\left(Z_{1}(n), \hat{z}\right) \mid M_{1}, M_{2}\right] . \tag{5}
\end{equation*}
$$

Defining g_{n} via (5) shows that

$$
\begin{equation*}
\mathbb{E}\left[d\left(Z_{1}(n), \phi_{n}\left(M_{1}, M_{2}\right)\right)\right] \geq \mathbb{E}\left[d\left(Z_{1}(n), g_{n}\left(M_{1}, M_{2}\right)\right)\right] \tag{6}
\end{equation*}
$$

Next, define \tilde{g}_{n} to be the Bayes detector for $Z_{1}(n)$ from $M_{1}, M_{2}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{2}^{n_{+}}$, i.e. let $\tilde{g}_{n}\left(M_{1}, M_{2}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{2}^{n_{+}}\right)=$

$$
\begin{equation*}
\arg \min _{\hat{z} \in \mathcal{Z}} \mathbb{E}\left[d\left(Z_{1}(n), \hat{z}\right) \mid M_{1}, M_{2}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{2}^{n_{+}}\right] \tag{7}
\end{equation*}
$$

The optimality (7) then shows $\mathbb{E}\left[d\left(Z_{1}(n), g_{n}\left(M_{1}, M_{2}\right)\right)\right] \geq$ $\mathbb{E}\left[d\left(Z_{1}(n), \tilde{g}_{n}\left(M_{1}, M_{2}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{2}^{n_{+}}\right)\right)\right]$. Proving with (4), (6), that

$$
\begin{equation*}
D \geq \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}\left[d\left(Z_{1}(n), \tilde{g}\left(U_{1}(n), U_{2}(n)\right)\right)\right] \tag{8}
\end{equation*}
$$

This proves the converse.
Here we evaluate and simplify the region for the binary sources with hamming distortion.

Theorem 2. For the interactive lossy Körner-Marton problem, (\boldsymbol{R}, D) is achievable if

$$
\begin{align*}
& R_{1} \geq 1-h(\alpha) \tag{9}\\
& R_{2} \geq h\left(\alpha * p_{1}\right)-h(\beta) \tag{10}
\end{align*}
$$

for some $0 \leq \beta, \alpha \leq 1 / 2$ such that $\beta * \alpha=D$.
Proof. Let U_{1} be the output of $\operatorname{BSC}(\alpha)$ with input X. Therefore, we have $X=U_{1} \oplus N_{1}$ where $N_{1} \sim \operatorname{Bern}(\alpha)$. The second user receiving U_{1}, generates U_{2} which is the output of $\operatorname{BSC}(\beta)$ with input $X \oplus Z_{1} \oplus U_{1}$.

$$
\begin{equation*}
X \oplus Z_{1} \oplus U_{1}=U_{2} \oplus N_{2} \tag{11}
\end{equation*}
$$

where $N_{2} \sim \operatorname{Bern}(\beta)$. We set the decoding function \hat{g} to be $\hat{g}\left(U_{1}, U_{2}\right)=U_{2}$. Hence, the distortion achieved at the receiver is

$$
\begin{aligned}
\mathbb{E}\left[d\left(Z_{1}, \hat{Z}_{1}\right)\right] & =p\left(Z_{1} \oplus \hat{Z}_{1}=1\right)=p\left(Z_{1} \oplus U_{2}=1\right) \\
& \stackrel{a}{=} p\left(Z_{1} \oplus X \oplus Z_{1} \oplus U_{1} \oplus N_{2}=1\right) \\
& \stackrel{b}{=} p\left(U_{1} \oplus N_{1} \oplus U_{1} \oplus N_{2}=1=\alpha * \beta\right.
\end{aligned}
$$

where a follows from (11). In b, we used $X=U_{1} \oplus N_{1}$. Note that, since $\alpha * \beta$ is a monotonically increasing and continues function in both α, and β, all the distortion $0 \leq D \leq 1 / 2$ can be achieved by this scheme. For $D \geq 1 / 2$ we can simply let $\hat{g}\left(U_{1}, U_{2}\right)=0$. The scheme explained above that achieves distortion $\alpha * \beta$ requires the rate $R_{1} \geq I\left(X ; U_{1}\right)$ as in (1), which simplifies to $I\left(X ; U_{1}\right)=H(X)-H\left(X \mid U_{1}\right)=1-$ $h(\alpha)$. The second rate the simplifies to $I\left(X \oplus Z_{1} ; U_{2} \mid U_{1}\right)=$ $H\left(X \oplus Z_{1} \mid U_{1}\right)-H\left(X \oplus Z_{1} \mid U_{1}, U_{2}\right)=h(\alpha * p)-h(\beta)$.

4. THREE-NODE LOSSY INTERACTIVE FUNCTION COMPUTATION

Inspired by the rate distortion region expression for the simple case presented in the previous section, in this section we return to the more complicated model depicted in Fig. 1 in which there is another random variable involved which is provided to the decoder to help the decoder compute a function of all of the sources. For an arbitrary number of users, an inner and outer bound for this problem's rate distortion region was provided in [9], which was not tight in general. In
this section, we improve upon the results in [9] by creating a matching outer bound will be proved to be tight for a correlated two-user and a side information scenario, where given the side information, the observations are independent. Note that the model handled in Section $\S 3$ is not included in Fig. 1, and Fig. 4. The reason is that in Fig. 3 there is no side information available to the decoder to optimally handle the randomness that is common to X_{1}, and X_{2}. The following theorem provides a single letter characterization of the ratedistortion region.

Theorem 3. For a two-user lossy interactive function computation with a side information X_{3}, where node $i \in\{1,2\}$ observes X_{i}, and $X_{1} \leftrightarrow X_{3} \leftrightarrow X_{2}$, the rate distortion region is:

$$
\mathcal{R D}_{d}^{t}=\left\{\begin{array}{l|c}
(\mathbf{R}, D) & \begin{array}{c}
R_{i} \geq I\left(X_{1} ; U_{i} \mid U_{1: i-1} X_{2}\right) \quad i \text { odd } \\
R_{i} \geq I\left(X_{2} ; U_{i} \mid U_{1: i-1} X_{1}\right) \quad i \text { even } \\
j=((i-1) \bmod 2)+1 \\
\mathbb{E}\left[d\left(X_{1: 3}, \hat{g}\left(U_{1: t}, X_{3}\right)\right)\right] \leq D \\
\\
U_{i} \leftrightarrow X_{j}, U_{1: i-1} \leftrightarrow X_{\{1,2,3\} \backslash\{j\}}
\end{array} \tag{12}
\end{array}\right\}
$$

where the alphabets \mathcal{U}_{i} satisfy $\left|\mathcal{U}_{i}\right| \leq\left|\mathcal{X}_{j}\right| \prod_{r=1}^{i-1}\left|\mathcal{U}_{r}\right|+1+$ $t-i$.

Proof. The achievability proof resembles [9], so we just prove the converse. The lower bound for the rate in the first round can be derived as follows.

$$
\begin{align*}
R_{1} & \geq H\left(M_{1}\right) \\
& =I\left(\boldsymbol{X}_{1}^{N} \boldsymbol{X}_{3}^{N} ; M_{1} \mid \boldsymbol{X}_{2}^{N}\right) \\
& =\sum_{n=1}^{N} H\left(X_{1}(n) X_{3}(n) \mid X_{2}(n)\right)-H\left(X_{1}(n) X_{3}(n) \mid M_{1} \boldsymbol{X}_{1}^{n_{-}} \boldsymbol{X}_{3}^{n_{+}} \boldsymbol{X}_{2}^{N}\right. \\
& \geq \sum_{n=1}^{N} H\left(X_{1}(n) \mid X_{2}(n)\right)-H\left(X_{1}(n) \mid M_{1} \boldsymbol{X}_{1}^{n_{-}} \boldsymbol{X}_{3}^{n_{+}} \boldsymbol{X}_{2}^{N}\right) \\
& \stackrel{a_{1}}{=} \sum_{n=1}^{N} H\left(X_{1}(n) \mid X_{2}(n)\right)-H\left(X_{1}(n) \mid M_{1} \boldsymbol{X}_{1}^{n_{-}} \boldsymbol{X}_{3}^{\backslash n}, \boldsymbol{X}_{2}^{N}\right) \\
& \geq \sum_{n=1}^{N} H\left(X_{1}(n) \mid X_{2}(n)\right)-H\left(Z_{1}(n) \mid M_{1} \boldsymbol{X}_{1}^{n_{-}} \boldsymbol{X}_{3}^{\backslash n}, \boldsymbol{X}_{2}^{n_{-}}, X_{2}(n)\right) \\
& \stackrel{a_{2}}{=} \sum_{n=1}^{N} I\left(X_{1}(n) ; U_{1}(n) \mid X_{2}(n)\right) \tag{13}
\end{align*}
$$

In a_{1} we have $\boldsymbol{X}_{3}^{n_{-}} \leftrightarrow M_{1} \boldsymbol{X}_{1}^{n_{-}} \boldsymbol{X}_{3}^{n_{+}} \boldsymbol{X}_{2}^{N} \leftrightarrow X_{1}(n)$. See Figure 6 for the proof. In a_{2} the auxiliary is chosen to be $U_{1}(n):=\left\{M_{1}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{3}^{\backslash n}, \boldsymbol{X}_{2}^{n_{-}}\right\}$. For $i \geq 2$, and i even we have

Fig. 6: Markov condition in a_{1} (left), b_{1} (middle), and b_{2} (right) for i even.

$$
\begin{aligned}
& R_{i} \geq H\left(M_{i}\right) \\
& \geq I\left(\boldsymbol{X}_{2}^{N}, \boldsymbol{X}_{3}^{N} ; M_{i} \mid M_{1: i-1}, \boldsymbol{X}_{1}^{N}\right) \\
& =\sum_{n=1}^{N} H\left(X_{2}(n) X_{3}(n) \mid M_{1: i-1}, \boldsymbol{X}_{1}^{N}, \boldsymbol{X}_{2}^{n_{-}}, \boldsymbol{X}_{3}^{n_{+}}\right) \\
& -H\left(X_{2}(n) X_{3}(n) \mid M_{1: i}, \boldsymbol{X}_{1}^{N}, \boldsymbol{X}_{2}^{n_{-}}, \boldsymbol{X}_{3}^{n_{+}}\right) \\
& \geq \sum_{n=1}^{N} H\left(X_{2}(n) \mid M_{1: i-1}, \boldsymbol{X}_{1}^{N}, \boldsymbol{X}_{2}^{n_{-}}, \boldsymbol{X}_{3}^{n_{+}}\right) \\
& -H\left(X_{2}(n) \mid M_{1: i}, \boldsymbol{X}_{1}^{N}, \boldsymbol{X}_{2}^{n_{-}}, \boldsymbol{X}_{3}^{n_{+}}\right) \\
& \stackrel{b_{1}}{\geq} \sum_{n=1}^{N} H\left(X_{2}(n) \mid M_{1: i-1}, \boldsymbol{X}_{1}^{N}, \boldsymbol{X}_{2}^{n_{-}}, \boldsymbol{X}_{3}^{\backslash n}\right) \\
& -H\left(X_{2}(n) \mid M_{1: i}, \boldsymbol{X}_{1}^{N}, \boldsymbol{X}_{2}^{n_{-}}, \boldsymbol{X}_{3}^{\backslash n}\right) \\
& \stackrel{b_{2}}{=} \sum_{n=1}^{N} H\left(X_{2}(n) \mid M_{1: i-1}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{2}^{n_{-}}, \boldsymbol{X}_{3}^{\backslash n}, X_{1}(n)\right) \\
& -H\left(X_{2}(n) \mid M_{1: i}, \boldsymbol{X}_{1}^{N}, \boldsymbol{X}_{2}^{n_{-}}, \boldsymbol{X}_{3}^{\backslash n}\right) \\
& \geq \sum_{n=1}^{N} H\left(X_{2}(n) \mid M_{1: i-1}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{2}^{n_{-}}, \boldsymbol{X}_{3}^{\backslash n}, X_{1}(n)\right) \\
& -H\left(X_{2}(n) \mid M_{1: i}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{2}^{n_{-}}, \boldsymbol{X}_{3}^{\backslash n}, X_{1}(n)\right) \\
& \stackrel{b_{3}}{=} \sum_{n=1}^{N} I\left(X_{2}(n) ; U_{i} \mid U_{1: i-1} X_{1}(n)\right)
\end{aligned}
$$

For the first term in b_{1} we used conditioning reduces the entropy, and for the second term we have
$X_{2}(n) \leftrightarrow M_{1: i} \boldsymbol{X}_{1}^{N} \boldsymbol{X}_{2}^{n_{-}} \boldsymbol{X}_{3}^{n_{+}} \leftrightarrow \boldsymbol{X}_{3}^{n_{-}}$. In b_{2} we have $X_{2}(n) \leftrightarrow M_{1: i-1} \boldsymbol{X}_{1}^{n_{-}} \boldsymbol{X}_{2}^{n_{-}} \boldsymbol{X}_{3}^{\backslash n} X_{1}(n) \leftrightarrow \boldsymbol{X}_{1}^{n_{+}}$. See Figure 6 for the proof. In b_{3} we defined the auxiliaries $U_{i}:=$ $\left\{M_{i}\right\}$ for $i \geq 2$.

For $i \geq 2$, and i odd we have

$$
\begin{aligned}
& R_{i} \geq H\left(M_{i}\right) \\
& =I\left(\boldsymbol{X}_{1}^{N}, \boldsymbol{X}_{3}^{N} ; M_{i} \mid M_{1: i-1}, \boldsymbol{X}_{2}^{N}\right) \\
& =\sum_{n=1}^{N} H\left(X_{1}(n) X_{3}(n) \mid M_{1: i-1}, \boldsymbol{X}_{2}^{N}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{3}^{n_{+}}\right) \\
& -H\left(X_{1}(n) X_{3}(n) \mid M_{1: i}, \boldsymbol{X}_{2}^{N}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{3}^{n_{+}}\right) \\
& \left.\geq \sum_{n=1}^{N} H\left(X_{1}(n)\right) \mid M_{1: i-1}, \boldsymbol{X}_{2}^{N}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{3}^{n_{+}}\right) \\
& -H\left(X_{1}(n) \mid M_{1: i}, \boldsymbol{X}_{2}^{N}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{3}^{n_{+}}\right) \\
& \left.\stackrel{c_{1}}{\geq} \sum_{n=1}^{N} H\left(X_{1}(n)\right) \mid M_{1: i-1}, \boldsymbol{X}_{2}^{N}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{3}^{\backslash n}\right) \\
& -H\left(X_{1}(n) \mid M_{1: i}, \boldsymbol{X}_{2}^{N}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{3}^{\backslash n}\right) \\
& \left.\stackrel{c_{2}}{\geq} \sum_{n=1}^{N} H\left(X_{1}(n)\right) \mid M_{1: i-1}, \boldsymbol{X}_{2}^{n_{-}}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{3}^{\backslash n}, X_{2}(n)\right) \\
& -H\left(X_{1}(n) \mid M_{1: i}, \boldsymbol{X}_{2}^{N}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{3}^{\backslash n}\right) \\
& \left.\geq \sum_{n=1}^{N} H\left(X_{1}(n)\right) \mid M_{1: i-1}, \boldsymbol{X}_{2}^{n_{-}}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{3}^{\backslash n}, X_{2}(n)\right) \\
& -H\left(X_{1}(n) \mid M_{1: i}, \boldsymbol{X}_{2}^{n_{-}}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{3}^{\backslash n}, X_{2}(n)\right) \\
& \stackrel{\underline{c_{3}}}{=} \sum_{n=1}^{N} I\left(X_{1}(n) ; U_{i} \mid U_{1: i-1} X_{2}(n)\right)
\end{aligned}
$$

For the first term in c_{1} we used conditioning reduces the entropy, and for the second term we have $X_{1}(n) \leftrightarrow M_{1: i} \boldsymbol{X}_{2}^{N} \boldsymbol{X}_{1}^{n_{-}} \boldsymbol{X}_{3}^{n_{+}} \leftrightarrow \boldsymbol{X}_{3}^{n_{-}}$. In c_{2} we have $X_{1}(n) \leftrightarrow M_{1: i-1} \boldsymbol{X}_{3}^{n_{-}} \boldsymbol{X}_{1}^{n_{-}} \boldsymbol{X}_{3}^{\backslash n} X_{2}(n) \leftrightarrow \boldsymbol{X}_{2}^{n_{+}}$. See Figure 7 for the proof of Markov conditions. In c_{3} the auxiliaries are chosen to be $U_{i}:=\left\{M_{i}\right\}$ for $i \geq 2$.

With this choice of auxiliaries we can check that the Markov conditions in equation (12) are obeyed. The first Markov condition $U_{1}(n) \leftrightarrow X_{1}(n) \leftrightarrow X_{2}(n), X_{3}(n)$ can be verified using Figure 8 (left), therefore $M_{1}, \boldsymbol{X}_{1}^{n_{-}}, \boldsymbol{X}_{3}^{\backslash n}, \boldsymbol{X}_{2}^{n_{-}} \leftrightarrow$ $X_{1}(n) \leftrightarrow X_{2}(n) X_{3}(n)$ holds. For other rounds, the Markov can be verified in Figure 8.

$$
\forall k=1: \frac{i-1}{2}, \quad i \text { odd }
$$

$$
\forall k=1: \frac{i-1}{2}, \quad i \text { odd }
$$

Fig. 7: Markov condition in c_{1} (left), and c_{2} (right) for i odd

Fig. 8: Markov condition obeyed for the first (left) and i even (middle), and i odd (right) number of rounds

This region has been derived for arbitrary t number of rounds, but, in the next example, we restrict our attention to two number of rounds to discuss the effect of overhearing the first message by the second user before the second message is transmitted. The following lemma is useful in providing the explicit expression for this region.

Lemma 1. $\mathcal{R} \mathcal{D}_{d}^{2}$ is a convex region.
Proof. See section $\S 5$ for the proof.

In the next section, we evaluate and simplify the achievable region for a particular family of message distributions.

4.1. Interactive binary sum computation with presence of the side information

In this section we derive the rate-distortion region for a binary sum computation of discrete symmetric binary sources subject to the Hamming distortion measure. In this case let \boldsymbol{X}_{3}^{N} be a sequence of i.i.d. Bernoulli random variables, $X_{3} \sim$ $\operatorname{Bern}\left(\frac{1}{2}\right)$. Let the variables \boldsymbol{X}_{1}^{N} and \boldsymbol{X}_{2}^{N} be observations of \boldsymbol{X}_{3}^{N} through independent binary-symmetric channels with cross-over probabilities p_{1}, and p_{2}, respectively. Therefore, $\left(X_{1}, X_{3}\right) \sim \operatorname{DSBS}\left(p_{1}\right)$, and $\left(X_{2}, X_{3}\right) \sim \operatorname{DSBS}\left(p_{2}\right)$, and $X_{1} \leftrightarrow X_{3} \leftrightarrow X_{2}$, as depicted in Fig. 4. The decoders aims to compute $Z=X_{1} \oplus X_{2} \oplus X_{3}$ subject to the hamming distor-
tion. That is, $\mathbb{E}(d(Z, \hat{Z}))=p(Z \neq \hat{Z})=h^{-1}(H(Z \oplus \hat{Z}))$. Next, we define the following region.

Definition 2. Assume $p_{2} \geq p_{1}$. For each value of D, we define $\eta(D)$ to be set of rates constructed as follows.
$\eta(D)=\bigcup_{\alpha, \beta, \lambda_{1}, \lambda_{2}}\left\{\begin{array}{c|c}\mathbf{R} & \begin{array}{c}R_{1} \geq\left(\lambda_{1}+\lambda_{2}\right)\left[h\left(p_{2} * p_{1} * \alpha\right)-h(\alpha)\right] \\ R_{2} \geq \lambda_{1}\left[h\left(p_{2} * p_{1} * \beta\right)-h(\beta)\right]\end{array}\end{array}\right\}$
where h is a binary entropy function and the region is defined over all tuple $\left(\lambda_{1}, \lambda_{2}, \alpha, \beta\right)$, such that $0 \leq \lambda_{1}, \lambda_{2} \leq 1$, and $0 \leq \alpha \leq p_{1}, 0 \leq \beta \leq \frac{p_{2}-p_{1}}{1-2 p_{1}}$, and

$$
\begin{equation*}
D=\lambda_{1}[\alpha * \beta]+\lambda_{2}\left[p_{2} * \beta\right]+\left(1-\lambda_{1}-\lambda_{2}\right)\left[p_{1} * p_{2}\right] \tag{14}
\end{equation*}
$$

Theorem 4. For computing the binary sum of three doubly symmetric binary sources $\left(X_{1}, X_{3}\right) \sim \operatorname{DSBS}\left(p_{1}\right)$, and $\left(X_{2}, X_{3}\right) \sim \operatorname{DSBS}\left(p_{2}\right)$ subject to the Hamming distortion, we have $\mathcal{R} \mathcal{D}_{d}^{2}(D) \subseteq \eta^{*}(D)$

Proof. To prove the upper bound, we consider a particular joint distribution of the sources X_{1}, X_{2}, X_{3}, and the auxiliary random variables U_{1}, U_{2}, and we evaluate the rate distortion expression for this particular distribution. For $D \geq \frac{1}{2}$ we simply let $\hat{g}\left(U_{1}, U_{2}\right)=0$. If $D \leq \frac{1}{2}$, then we choose the distributions as follows. First, let $\left(U_{1}, U_{2}\right)$ be degenerate, such that
$U_{1}=U_{2}=\emptyset$. Let $\hat{g}\left(U_{1}, U_{2}, X_{3}\right)=X_{3}$. Then, we get distortion $\mathbb{E}\left[d\left(Z, \hat{g}\left(U_{1}, U_{2}, X_{3}\right)\right)\right]=\mathbb{E}\left[d\left(X_{1} \oplus X_{2} \oplus X_{3}, X_{3}\right)\right]=$ $p_{1} * p_{2}$. The proof is as follows.

$$
\begin{aligned}
& \mathbb{E}\left[d\left(X_{1} \oplus X_{2} \oplus X_{3}, X_{3}\right)\right]=p\left(X_{1} \oplus X_{2} \oplus X_{3} \neq X_{3}\right) \\
& =p\left(X_{1} \oplus X_{2} \oplus X_{3} \oplus X_{3}=1\right)=p\left(X_{1} \oplus X_{2}=1\right) \\
& =p\left(Z_{1} \oplus Z_{2}=1\right)=p_{1} * p_{2}
\end{aligned}
$$

Hence, any distortion $p_{1} * p_{2} \leq D \leq \frac{1}{2}$ is achievable by this scheme. Second, for $D \leq p_{1} * p_{2}$, let U_{1} be the output of a $\operatorname{BSC}(\alpha), 0 \leq \alpha \leq p_{1}$, with input X_{1} while $U_{2}=\emptyset$. We define $\hat{g}\left(U_{1}, U_{2}, X_{3}\right)=U_{1}$. Thus, we get the distortion $\mathbb{E}\left[d\left(Z, \hat{g}\left(U_{1}, U_{2}, X_{3}\right)\right)\right]=\mathbb{E}\left[d\left(Z, U_{1}\right)\right]=$ $\mathbb{E}\left[d\left(X_{1} \oplus X_{2} \oplus X_{3}, U_{1}\right)\right]=p_{2} * \alpha$. Since $X_{1} \oplus X_{2} \oplus X_{3} \leftrightarrow$ $X_{1} \leftrightarrow U_{1}$, this can be proved using Mrs. Gerber's Lemma

$$
\begin{align*}
& H\left(X_{1} \oplus X_{2} \oplus X_{3} \mid U_{1}\right) \tag{15}\\
& =h\left(h^{-1}\left(H\left(X_{1} \oplus X_{2} \oplus X_{3} \mid X_{1}\right)\right) * h^{-1}\left(H\left(X_{1} \mid U_{1}\right)\right)\right)
\end{align*}
$$

To derive the first term in the right hand side of (15), we show that $X_{1} \oplus X_{2} \oplus X_{3}$ and X_{1} are related via a $\operatorname{BSC}\left(p_{2}\right)$.

$$
\begin{align*}
& p\left(X_{1} \oplus X_{2} \oplus X_{3} \neq X_{1}\right)=p\left(X_{1} \oplus X_{2} \oplus X_{3} \oplus X_{1}=1\right) \\
& =p\left(X_{2} \oplus X_{3}=1\right)=p\left(Z_{2}=1\right)=p_{2} \tag{16}
\end{align*}
$$

Substituting (16) in (15) we have,

$$
\begin{equation*}
H\left(X_{1} \oplus X_{2} \oplus X_{3} \mid U_{1}\right)=h\left(p_{2} * \alpha\right) \tag{17}
\end{equation*}
$$

With this scheme, any distortion $p_{2} \leq D<p_{1} * p_{2}$ can be achieved. Hence, the minimum rate for the first user is

$$
\begin{align*}
R_{1}\left(p_{2} * \alpha\right) & =I\left(X_{1} ; U_{1} \mid X_{2}\right)=H\left(U_{1} \mid X_{2}\right)-H\left(U_{1} \mid X_{1}\right) \\
& =h\left(p_{1} * p_{2} * \alpha\right)-h(\alpha) \tag{18}
\end{align*}
$$

Finally, to achieve any distortion in $0 \leq D<p_{2}$, let U_{2} be the output of a $\operatorname{BSC}(\beta), 0 \leq \beta \leq \frac{p_{2}-p_{1}}{1-2 p_{1}}$, with input $X_{2} \oplus U_{1}$, while U_{1} is the output of $\operatorname{BSC}(\alpha)$ with input X_{1}. We define $\hat{g}\left(U_{1}, U_{2}, X_{3}\right)=U_{2} \oplus X_{3}$. Thus, the distortion will be $\mathbb{E}\left[d\left(Z, \hat{g}\left(U_{1}, U_{2}, X_{3}\right)\right)\right]=\mathbb{E}\left[d\left(Z, U_{2} \oplus X_{3}\right)\right]=$ $\mathbb{E}\left[d\left(X_{1} \oplus X_{2} \oplus X_{3}, U_{2} \oplus X_{3}\right)\right]$
$=\mathbb{E}\left[d\left(X_{1} \oplus X_{2}, U_{2}\right)\right]=\alpha * \beta$. This can also be seen by Mrs. Gerber's Lemma, since $X_{1} \oplus X_{2} \leftrightarrow X_{2} \oplus U_{1} \leftrightarrow U_{2}$, and

$$
\begin{align*}
& H\left(X_{1} \oplus X_{2} \oplus X_{3} \mid U_{2}\right) \\
& =h\left(h^{-1}\left(H\left(X_{1} \oplus X_{2} \mid X_{2} \oplus U_{1}\right)\right) * h^{-1}\left(H\left(X_{2} \oplus U_{1} \mid U_{2}\right)\right)\right) \\
& \stackrel{a}{=} h(\alpha * \beta) \tag{19}
\end{align*}
$$

where in a we used the fact that $H\left(X_{1} \oplus X_{2} \mid X_{2} \oplus U_{1}\right)=$ $H\left(X_{1} \mid U_{1}\right)$ Note that the upper bound for parameter β is derived such that $p_{1} * \frac{p_{2}-p_{1}}{1-2 p_{1}}=p_{2}$. As a result, this scheme is achievable for any distortion $0 \leq D \leq p_{2}$. Therefore, the
minimum rate for the second user that can be achieved with the distortion $\alpha * \beta$ is

$$
\begin{align*}
R_{2}(\alpha * \beta) & =I\left(X_{2} ; U_{2} \mid U_{1} X_{1}\right)=H\left(U_{2} \mid U_{1} X_{1}\right)-H\left(U_{2} \mid X_{2} U_{1}\right) \\
& \stackrel{b}{=} h\left(p_{1} * p_{2} * \beta\right)-h(\beta) \tag{20}
\end{align*}
$$

Where in b we used the Markov chain, $U_{2} \leftrightarrow X_{2} U_{1} \leftrightarrow U_{1} X_{1}$ and applied Mrs. Gerber's lemma to $H\left(U_{2} \mid U_{1} X_{1}\right)$

$$
\begin{align*}
& =h\left(h^{-1}\left(H\left(U_{2} \mid X_{2}, U_{1}\right)\right) * h^{-1}\left(H\left(X_{2}, U_{1} \mid U_{1} X_{1}\right)\right)\right) \\
& =h\left(p_{1} * p_{2} * \beta\right) \tag{21}
\end{align*}
$$

The remainder of the proof invokes convexity and considers a combination of the three above scenarios.

5. PROOF OF LEMMA 1, CONVEXITY

Let D_{a} and D_{b} be two distortion values, and let $\left\{\left(U_{1, a}, U_{2, a}\right), \hat{g}_{a}\right\}$, and $\left\{\left(U_{1, b}, U_{2, b}\right), \hat{g}_{b}\right\}$ be the variables that achieve the point $\left(\boldsymbol{R}_{a}, D_{a}\right) \in \overline{\mathcal{R D}}^{t}$, and $\left(\boldsymbol{R}_{b}, D_{b}\right) \in \overline{\mathcal{R}}^{t}$, in the closure of the rate distortion region, respectively. Let Q be an independent time sharing random variable such that $p(Q=$ $a)=\lambda$. Define $U_{1}=\left(Q, U_{1, Q}\right)$, and $U_{2}=\left(Q, U_{2, Q}\right)$, and $\hat{g}\left(U_{1}, U_{2}, X_{3}\right)=\hat{g}_{Q}\left(U_{1, Q}, U_{2, Q}, X_{3}\right)$

$$
\begin{align*}
& D=\mathbb{E}[d(Z, \hat{Z})]=\mathbb{E}\left[d\left(Z, \hat{g}\left(U_{1}, U_{2}, X_{3}\right)\right]\right. \\
& =p(Q=a) \mathbb{E}\left[d\left(Z, \hat{g}\left(U_{1}, U_{2}, X_{3}\right) \mid Q=a\right]\right. \\
& +p(Q=b) \mathbb{E}\left[d\left(Z, \hat{g}\left(U_{1}, U_{2}, X_{3}\right) \mid Q=b\right]\right. \\
& =p(Q=a) \mathbb{E}\left[d\left(Z, \hat{g}_{a}\left(U_{1, a}, U_{2, a}, X_{3}\right)\right]\right. \\
& +p(Q=b) \mathbb{E}\left[d\left(Z, \hat{g}_{b}\left(U_{1, b}, U_{2, b}, X_{3}\right)\right]\right. \\
& =\lambda D_{a}+(1-\lambda) D_{b} \tag{22}
\end{align*}
$$

The rate for the first round:

$$
\begin{align*}
& I\left(X_{1} ; U_{1} \mid X_{2}\right)=I\left(X_{1} ; U_{1}\right)-I\left(X_{2} ; U_{1}\right) \\
& =H\left(X_{1}\right)-H\left(X_{1} \mid Q, U_{1, Q}\right)-H\left(X_{2}\right)+H\left(X_{2} \mid Q, U_{1, Q}\right) \\
& =H\left(X_{1}\right)-\lambda H\left(X_{1} \mid U_{1, a}\right)-(1-\lambda) H\left(X_{1} \mid U_{1, b}\right) \\
& \quad \quad-H\left(X_{2}\right)+\lambda H\left(X_{2} \mid U_{1, a}\right)+(1-\lambda) H\left(X_{2} \mid U_{1, b}\right) \\
& =\lambda\left(I\left(X_{1} ; U_{1, a}\right)-I\left(X_{2}, U_{1, a}\right)\right) \\
& \quad \quad+(1-\lambda)\left(I\left(X_{1} ; U_{1, b}\right)-I\left(X_{2}, U_{1, b}\right)\right) \\
& =\lambda I\left(X_{1} ; U_{1, a} \mid X_{2}\right)+(1-\lambda)\left(I\left(X_{1} ; U_{1, b} \mid X_{2}\right)\right) \tag{23}
\end{align*}
$$

The rate at the second round becomes,

$$
\begin{align*}
& I\left(X_{2} ; U_{2} \mid U_{1} X_{1}\right)=H\left(X_{2} \mid U_{1} X_{1}\right)-H\left(X_{2} \mid U_{1} U_{2} X_{1}\right) \\
& =H\left(X_{2} \mid U_{1, Q}, Q, X_{1}\right)-H\left(X_{2} \mid U_{1, Q}, U_{2, Q}, Q, X_{1}\right) \\
& =\lambda H\left(X_{2} \mid U_{1, a}, X_{1}\right)+(1-\lambda) H\left(X_{2} \mid U_{1, b}, X_{1}\right) \\
& -\lambda H\left(X_{2} \mid U_{1, a}, U_{2, a}, X_{1}\right)+(1-\lambda) H\left(X_{2} \mid U_{1, b}, U_{2, b}, X_{1}\right) \\
& =\lambda H\left(X_{2} \mid U_{1, a}, X_{1}\right)-\lambda H\left(X_{2} \mid U_{1, a}, U_{2, a}, X_{1}\right) \\
& +(1-\lambda) H\left(X_{2} \mid U_{1, b}, X_{1}\right)+(1-\lambda) H\left(X_{2} \mid U_{1, b}, U_{2, b}, X_{1}\right) \\
& =\lambda I\left(X_{2} ; U_{2, a} \mid U_{1, a}, X_{1}\right)+(1-\lambda) I\left(X_{2} ; U_{2, b} \mid U_{1, b}, X_{1}\right) \tag{24}
\end{align*}
$$

We define W_{1} and W_{2} to be the auxiliaries that achieve the the rate tuple $\boldsymbol{R}=\left(R_{1}, R_{2}\right)$ at the closure of the the rate distortion region for distortion D defined in (22).

$$
\begin{align*}
R_{1}(D) & =I\left(X_{1} ; W_{1} \mid X_{2}\right) \\
& \stackrel{a_{1}}{\leq} I\left(X_{1} ; U_{1} \mid X_{2}\right) \\
& \stackrel{a_{2}}{=} \lambda I\left(X_{1} ; U_{1, a} \mid X_{2}\right)+(1-\lambda)\left(I\left(X_{1} ; U_{1, b} \mid X_{2}\right)\right) \tag{25}
\end{align*}
$$

In step a_{1}, we substitute W_{1} with auxiliary U_{1}, because $\left(U_{1}, U_{2}\right)$ achieve distortion D but not necessarily achieve the rates in the closure of the rate distortion region (minimum rate). Step a_{2} follows from (23).

$$
\begin{align*}
R_{2}(D) & =I\left(X_{2} ; W_{2} \mid W_{1} X_{1}\right) \\
& \stackrel{b_{1}}{\leq} I\left(X_{2} ; U_{2} \mid U_{1} X_{1}\right) \\
& \stackrel{b_{2}}{=} \lambda I\left(X_{2} ; U_{2, a} \mid U_{1, a}, X_{1}\right)+(1-\lambda) I\left(X_{2} ; U_{2, b} \mid U_{1, b}, X_{1}\right) \tag{26}
\end{align*}
$$

In step b_{1} we use the the same argument as in a_{1}, and step b_{2} follows from (24). Recall that ($U_{1, a}, U_{2, a}$) were defined to achieve distortion D_{a}, and $\boldsymbol{R}\left(D_{a}\right)$, and $\left(U_{1, b}, U_{2, b}\right)$ were defined to achieve distortion D_{b}, and rate tuple $\boldsymbol{R}\left(D_{b}\right)$. Therefore, any point that achieves any distortion in between, (D), should have its rate tuple greater than $\left(R_{1}(D), R_{2}(D)\right)$. This proves the convexity of the rate distortion region (12).

6. CONCLUSION

Building upon a newly proven rate distortion region for a lossy interactive variants of the classical Körner Marton problem, this paper determined and presented the rate distortion region for a lossy interactive distributed function computation problem in which the observations being encoded are conditionally independent given a side information at the decoder. Additionally, simple expressions for achievable regions for the special case of computing the sum of doubly symmetric binary sources were presented. Future work will investigate whether these achievable regions match the optimal region dictated by the theorem.

7. REFERENCES

[1] A. Orlitsky and J. R. Roche, "Coding for computing," IEEE Trans. Inform. Theory, vol. 47, no. 3, pp. 903917, March 2001.
[2] V. Doshi, D. Shah, M. Medard, and S. Jaggi, "Functional compression through graph coloring," IEEE Trans. Inform. Theory, vol. 56, no. 8, pp. 3901-3917, August 2010.
[3] T. S. Han and K. Kobayashi, "A dichotomy of functions $\mathrm{f}(\mathrm{x}, \mathrm{y})$ of correlated sources (x, y) from the viewpoint of the achievable rate region," IEEE Trans. Inform. Theory, vol. 33, no. 1, pp. 69-76, January 1987.
[4] A. B. Wagner, B. G. Kelly, and Y. Altug, "Distributed rate-distortion with common components," IEEE Transactions on Information Theory, vol. 57, no. 7, pp. 40354057, 2011.
[5] J. Korner and K. Marton, "How to encode the modulotwo sum of binary sources (corresp.)," IEEE Trans. Inform. Theory, vol. 25, no. 2, pp. 219-221, 1979.
[6] M. Sefidgaran, A. Gohari, and M. R. Aref, "On körnermarton's sum modulo two problem," in Communication and Information Theory (IWCIT), 2015 Iran Workshop on. IEEE, 2015, pp. 1-6.
[7] A. H. Kaspi, "Two-way source coding with a fidelity criterion," IEEE Trans. Inform. Theory, vol. 31, no. 6, p. 735, November 1985.
[8] N. Ma, P. Ishwar, and P. Gupta, "Interactive source coding for function computation in collocated networks," IEEE Trans. Inf. Theory, vol. 58, no. 7, pp. 4289-4305, 2012.
[9] S. Torabi and J. M. Walsh, "Distributed lossy interactive function computation," in 54th Allerton Conf. Comm., Control, Comp., To Appear. [Online]. Available: http://www.ece.drexel.edu/walsh/TorabiAllerton16.pdf
[10] G. Ku, J. Ren, and J. M. Walsh, "Computing the rate distortion region for the ceo problem with independent sources," IEEE Trans. Sig. Proc., vol. 63, no. 3, pp. 567575, Feb. 2015.

