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ABSTRACT

In lossy interactive function computation, a series of encoders
serially broadcast messages encoded from their observations
and previously overheard messages in a round robin fashion,
with the aim of enabling a decoder, the central estimation of-
ficer (CEO), having access to these messages, to compute a
function of all of their local observations up to a given fidelity
criterion. Of great interest in this problem is the rate distor-
tion region, describing all possible vectors of rates for which
their exist encoders and decoders not exceeding a specified
distortion. This paper determines the rate distortion region for
several variants of this lossy interactive function computation
model in which the observations at the encoders are depen-
dent. First, a rate distortion expression is given for an inter-
active lossy variant of the Körner Marton problem, in which
the function the CEO aims to compute is the binary sum of
the observations at each of two encoders observing doubly
symmetric binary sources. Building from this result, the rate
distortion region for a far more general model in which the
CEO is equipped with a side information, and the observa-
tions at the encoders need only be conditionally independent
given this side information, is determined.

Index Terms— Lossy Compression, function computa-
tion, interactive communication, Rate-Distortion

1. INTRODUCTION

With the growing attention to efficient computation for rapid
learning from massive datasets and the design of large remote
sensing systems, it has become increasingly relevant to un-
derstand fundamental limits for distributed function compu-
tation. In distributed function computation, a series of ter-
minals encode local observations into messages with the aim
of enabling another terminal, the central estimation officer, to
compute a function of their collected observations. Multiple
variants of this problem have been considered in the litera-
ture, and we review only a few of the most closely related
information theoretic ones here. In these information the-
oretic variants, each terminal observes a independently and
identically distributed sequence of discrete random variable
observations, and the goal is to enable the CEO to compute

the function across the observations of different terminals for
each element of the sequence. Of particular interest is the re-
gion of message rates, measured in bits per sequence element,
which enable the function to be computed. This literature
can roughly be characterized along three axes: 1) whether or
not the encoders must send their messages in one-shot fash-
ion, or if they are allowed to overhear other messages and
interact, 2) whether the function must be computed with ar-
bitrarily small probability of error or within an upper bound
on average element-wise distortion, and 3) whether or not
the observations of different encoders are independent. For
non-interactive lossless computation, an important early re-
sult [1] established the first fundamental lossless theorem for
a point to point case where a function of two sources are re-
constructed with one source being uncoded and available to
the decoder. This was further generalized to a distributed
case [2]. However, the generalization is not yet completely
solved for a general function of arbitrary correlated sources
[3]. Efforts have been, since then, extended to studying spe-
cial correlation among the sources [4], and computing special
functions [5]. An especially early canonical instance of the
one-shot lossless variant of the problem was investigated by
Körner and Marton in [5], who provided a method for loss-
lessly computing the binary sum of doubly symmetric binary
sources (DSBS) as depicted in Fig. 2 without the need to
communicate the sources directly. More broadly, [6] pro-
vided inner and outer bound for the rate region of the sources
that have neither independence nor symmetric property. If
the sources are allowed to interact, building from a rate dis-
tortion region for a point to point interactive case [7], the rate
region for interactive lossless computation has been obtained
in [8] for independent sources. [9] considered this problem in
a lossy regime with presence of the side information, which
subsumes the model in [8]. This paper investigates a variant
of this lossy interactive function computation with dependent
observations, and proves the rate distortion region under cer-
tain conditions.

Another main source of difficulty after obtaining the rate
distortion expression is computing the region, which usually
admits cardinality bounds on its auxiliary random variables.
If the compressed messages from which the function must be
computed, are sent in a one-shot, non-interactive manner, and
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the observations are independnet, [10] admits a Blahut Ari-
moto type algorithm to iteratively compute the rate distortion
region. [8] provides a convex geometric approach algorithm
to compute the region for losslessly reproducing a function of
distributed independent sources. However, from a practical
standpoint, even for small problems, it uses a large series of
convex hulls, which is unlikely to be computationally feasi-
ble in many contexts. Inspired by this, in addition to the main
contribution of this paper, which is a derivation the optimal
rate distortion region expression for a new problem, we have
included a simplification evaluation of it for binary sources
and messages.

After more precisely defining the problem in §2, we be-
gin by finding the rate-distortion region for lossy interactive
Körner-Marton type problem. We then explicitly evaluate an
achievable region for computing the binary sum of two DSBS
(§3). Building on this result, in §4 we consider a harder more
general model with presence of the side information, such that
given the side information the sources become independent,
and a general function of all the sources needs to be computed
at the decoder. The main result in the paper shows that the
side information can optimally handle the randomness that is
common between the sources, therefore, the optimal rate dis-
tortion region is can be derived in this conditionally indepen-
dent case. Finally, an example with binary sources is provided
(§4.1).

2. PROBLEM FORMULATION

Consider a network with two source terminals and a single
sink terminal as depicted in Fig. 1. Terminal j = 1, 2 ob-
serves a random sequence XN

j = (Xj(1), ..., Xj(N)) ∈
XNj . The sink node, the central estimation officer (CEO),
observes a side information sequence X3(n), n ∈ [N ] which
is assumed to be correlated with the source variables. The
random vectors X1:3(n) = (X1(n), X2(n), X3(n)) are iid in
time n ∈ [N ], and, X1(n) ↔ X3(n) ↔ X2(n). The sink
terminal wishes to compute f : X1 × X2 × X3 → Z in a
lossy manner elementwise, estimating the sequence ZN =

(Z(1), ..., Z(N)) with Z(n) = f(X1(n), X2(n), X3(n)).
Let d : X1 × X2 × X3 × Z → R+ be a fidelity criterion
for this function computation, yielding the block distortion
metric

d(N)(XN
1:3, Ẑ

N
) =

1

N

N∑
n=1

d(x1(n), x2(n), x3(n), ẑ(n))

In order to enable the CEO to estimate the function com-
putation, the nodes take turns broadcasting messages which
are perfectly received at both the other nodes and the CEO.
The communication is initiated by node 1, and at round i,
node j = ((i − 1) mod 2) + 1 sends a message Mi ∈ Mi,
using the encoding function ψi : XNj ×

⊗i−1
k=1Mk → Mi

to encode its observations based on the previously overheard
messages. After t rounds of communication, the CEO esti-
mates the function sequence based on the messages it has re-
ceived and the side information using the decoding function
φ : XN3 ×

⊗t
k=1Mk → ZN .

Definition 1. A rate-distortion tuple (R, D) = (R1, R2, ..., Rt, D)
is admissible for t-message interactive function computation,
if ∀ε > 0, and ∀N > n(ε, t), there exist encoders ψi, i ∈
{1, . . . , t} and a decoder φwith parameters (t,N, |M1|, ..., |Mt|)
satisfying 1

N log2 |Mi| ≤ Ri∀i = 1, ..., t and E
[
d(N)(XN

1:3, Ẑ
N
)
]
≤

D + ε with Ẑ
N

= φ(M1, . . . ,Mt,X
N
3 ).

Finally, define the collection of admissible rate and distor-
tion vectors (R, D) to be RDt. We use this notations again
in Section §4, where the complete characterization of the rate
region of Fig. 1 is provided.

3. INTERACTIVE LOSSY KÖRNER-MARTON
PROBLEM

Consider next a special case of this problem in Fig. 3, in-
spired by the Körner Marton problem, Fig. 2, in which we
have two dependent sources, X1 = X ∼ Bern(1/2), and
X2 = X + Z1 with Z1 ∼ Bern(p1) being independent of X ,
and the CEO wishes to compute the binary sum of the sources,
X1 ⊕ X2 = Z1 losslessly. For this Körner-Marton problem
in 2, it has been shown that to compute this function the set of
rate required areR1 ≥ h(p), andR2 ≥ h(p), which improves
upon the Slepian-Wolf rate region. This result was among
one of the first examples that provided a fundamental limit
of compression for computing a particular function without a
need to communicate the sources in a non-interactive context.
Fig. 3 shows an interactive lossy variant of Körner-Marton
problem, where the binary sum should be computed subject to
the Hamming distortion. Inspired from [4], since one source
is a deterministic function of the other source and the decoder
seeks to reproduce a function of the sources (rather than re-
producing the sources itself as in [4]), with the function Z1,
being independent of one of the sources, the complete rate-
distortion region can be characterized in Theorem 1.
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Theorem 1. For the model in Fig. 3 the complete characteri-
zation of the rate-distortion region can be derived as follows.

RD2
c =

(R, D)

∣∣∣∣∣∣∣∣∣∣
R1 ≥ I(X;U1)

R2 ≥ I(X ⊕ Z1;U2|U1)
E
[
d(Z1, ĝ(U1,2))

]
≤ D

U1 ↔ X ↔ X ⊕ Z1

U2 ↔ X ⊕ Z1, U1 ↔ X

 (1)

Proof. The achievability proof follows from [9], so we
only present the converse proof. We define the auxiliaries
U1(n) := {M1,X

n−
1 ,X

n+

2 }, U2(n) :=M2. The rate for the
first round can be lower bounded as

R1 ≥ H(M1) ≥ I(XN
1 ,X

N
2 ;M1)

=

N∑
n=1

H(X1(n)X2(n))−H(X1(n)X2(n)|M1X
n−
1 ,X

n+

2 )

a
≥

N∑
n=1

H(X1(n))−H(X1(n)|M1X
n−
1 X

n+

2 )

=

N∑
n=1

I(X1(n);U1(n)) (2)

In step a we used the positivity of the conditional mutual in-

X
n�
1 X

n�
2

X
n+

1

X1 X2

X
n+

2

M1 M2

X
n�
1 X

n�
2

X
n+

1

X1 X2

X
n+

2

M1

Fig. 5: Markov constraints in Theorem 1. Observed random
variables are shown in square.

formation. For the second round of communication:

R2 ≥ H(M2)

≥ I(XN
2 XN

1 ;M2|M1)

=

N∑
n=1

H(X1(n)X2(n)|M1X
n+

2 X
n−
1 )

−H(X1(n)X2(n)|M1M2X
n+

2 X
n−
1 )

≥
N∑
n=1

H(X2(n)|M1X
n+

2 X
n−
1 )−H(X2(n)|M1M2X

n−
1 X

n+

2 )

=

N∑
n=1

I(X2(n);U2(n)|U1(n)) (3)

The Markov constraints M1,X
n−
1 ,X

n+

2 ↔ X1(n) ↔
X2(n), and M2 ↔ X2(n),M1,X

n−
1 ,X

n+

2 ↔ X1(n) can
be verified in Fig. 5. We use the graphical representation of
the factorized distribution to verify the Markov properties,
and exploit the conditional independence structure among the
random variables. In this undirected graphs, the nodes are
random variables appeared in the factorized distribution, and
two nodes are connected if they appeared in the same factor.
We have X ↔ V ↔ Y if every path between X , and Y
contains some node V ∈ V .

To prove the single letter characterization of the distor-
tion, we use the converse assumption, that there exists a de-
coding function φ(M1,M2), with nth element φn, obeying

D ≥ 1

N

N∑
n=1

E[d(Z1(n), φn(M1,M2))] (4)

Define the function g :M1 ×M2 → ZN1 with nth element
gn, to be the Bayes detector for Z1(n) from M1,M2:

gn(M1,M2) = arg min
ẑ∈Z1

E[d(Z1(n), ẑ)|M1,M2]. (5)

Defining gn via (5) shows that

E[d(Z1(n), φn(M1,M2))] ≥ E[d(Z1(n), gn(M1,M2))]
(6)

Next, define g̃n to be the Bayes detector for Z1(n) from
M1,M2, Xn−

1 ,X
n+

2 , i.e. let g̃n(M1,M2,X
n−
1 ,X

n+

2 ) =

argmin
ẑ∈Z

E[d(Z1(n), ẑ)|M1,M2,X
n−
1 ,X

n+

2 ]. (7)



The optimality (7) then shows E[d(Z1(n), gn(M1,M2))] ≥
E[d(Z1(n), g̃n(M1,M2,X

n−
1 ,X

n+

2 ))]. Proving with (4),
(6), that

D ≥ 1

N

N∑
n=1

E[d(Z1(n), g̃(U1(n), U2(n)))] (8)

This proves the converse.

Here we evaluate and simplify the region for the binary
sources with hamming distortion.

Theorem 2. For the interactive lossy Körner-Marton prob-
lem, (R, D) is achievable if

R1 ≥ 1− h(α) (9)
R2 ≥ h(α ∗ p1)− h(β) (10)

for some 0 ≤ β, α ≤ 1/2 such that β ∗ α = D.

Proof. Let U1 be the output of BSC(α) with input X . There-
fore, we have X = U1 ⊕ N1 where N1 ∼ Bern(α). The
second user receiving U1, generates U2 which is the output of
BSC(β) with input X ⊕ Z1 ⊕ U1.

X ⊕ Z1 ⊕ U1 = U2 ⊕N2 (11)

where N2 ∼ Bern(β). We set the decoding function ĝ to
be ĝ(U1, U2) = U2. Hence, the distortion achieved at the
receiver is

E[d(Z1, Ẑ1)] = p(Z1 ⊕ Ẑ1 = 1) = p(Z1 ⊕ U2 = 1)
a
= p(Z1 ⊕X ⊕ Z1 ⊕ U1 ⊕N2 = 1)

b
= p(U1 ⊕N1 ⊕ U1 ⊕N2 = 1 = α ∗ β

where a follows from (11). In b, we usedX = U1⊕N1. Note
that, since α ∗ β is a monotonically increasing and continues
function in both α, and β, all the distortion 0 ≤ D ≤ 1/2
can be achieved by this scheme. For D ≥ 1/2 we can simply
let ĝ(U1, U2) = 0. The scheme explained above that achieves
distortion α ∗ β requires the rate R1 ≥ I(X;U1) as in (1),
which simplifies to I(X;U1) = H(X) − H(X|U1) = 1 −
h(α). The second rate the simplifies to I(X ⊕ Z1;U2|U1) =
H(X⊕Z1|U1)−H(X⊕Z1|U1, U2) = h(α∗p)−h(β).

4. THREE-NODE LOSSY INTERACTIVE FUNCTION
COMPUTATION

Inspired by the rate distortion region expression for the sim-
ple case presented in the previous section, in this section we
return to the more complicated model depicted in Fig. 1 in
which there is another random variable involved which is pro-
vided to the decoder to help the decoder compute a function
of all of the sources. For an arbitrary number of users, an
inner and outer bound for this problem’s rate distortion re-
gion was provided in [9], which was not tight in general. In

this section, we improve upon the results in [9] by creating a
matching outer bound will be proved to be tight for a corre-
lated two-user and a side information scenario, where given
the side information, the observations are independent. Note
that the model handled in Section §3 is not included in Fig.
1, and Fig. 4. The reason is that in Fig. 3 there is no side
information available to the decoder to optimally handle the
randomness that is common to X1, and X2. The following
theorem provides a single letter characterization of the rate-
distortion region.

Theorem 3. For a two-user lossy interactive function com-
putation with a side information X3, where node i ∈ {1, 2}
observes Xi, and X1 ↔ X3 ↔ X2, the rate distortion region
is:

RDtd =

(R, D)

∣∣∣∣∣∣∣∣∣∣
Ri ≥ I(X1;Ui|U1:i−1X2) i odd
Ri ≥ I(X2;Ui|U1:i−1X1) i even

j = ((i− 1) mod 2) + 1
E
[
d(X1:3, ĝ(U1:t, X3))

]
≤ D

Ui ↔ Xj , U1:i−1 ↔ X{1,2,3}\{j}


(12)

where the alphabets Ui satisfy |Ui| ≤ |Xj |
∏i−1
r=1 |Ur| + 1 +

t− i.

Proof. The achievability proof resembles [9], so we just
prove the converse. The lower bound for the rate in the first
round can be derived as follows.

R1 ≥ H(M1)

= I(XN
1 XN

3 ;M1|XN
2 )

=

N∑
n=1

H(X1(n)X3(n)|X2(n))−H(X1(n)X3(n)|M1X
n−
1 X

n+

3 XN
2 )

≥
N∑
n=1

H(X1(n)|X2(n))−H(X1(n)|M1X
n−
1 X

n+

3 XN
2 )

a1=

N∑
n=1

H(X1(n)|X2(n))−H(X1(n)|M1X
n−
1 X

\n
3 ,XN

2 )

≥
N∑
n=1

H(X1(n)|X2(n))−H(Z1(n)|M1X
n−
1 X

\n
3 ,X

n−
2 , X2(n))

a2=

N∑
n=1

I(X1(n);U1(n)|X2(n)) (13)

In a1 we have X
n−
3 ↔ M1X

n−
1 X

n+

3 XN
2 ↔ X1(n). See

Figure 6 for the proof. In a2 the auxiliary is chosen to be
U1(n) := {M1,X

n−
1 ,X

\n
3 ,X

n−
2 }. For i ≥ 2, and i even we

have
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Ri ≥ H(Mi)

≥ I(XN
2 ,X

N
3 ;Mi|M1:i−1,X

N
1 )

=

N∑
n=1

H(X2(n)X3(n)|M1:i−1,X
N
1 ,X

n−
2 ,X

n+

3 )

−H(X2(n)X3(n)|M1:i,X
N
1 ,X

n−
2 ,X

n+

3 )

≥
N∑
n=1

H(X2(n)|M1:i−1,X
N
1 ,X

n−
2 ,X

n+

3 )

−H(X2(n)|M1:i,X
N
1 ,X

n−
2 ,X

n+

3 )

b1≥
N∑
n=1

H(X2(n)|M1:i−1,X
N
1 ,X

n−
2 ,X

\n
3 )

−H(X2(n)|M1:i,X
N
1 ,X

n−
2 ,X

\n
3 )

b2=

N∑
n=1

H(X2(n)|M1:i−1,X
n−
1 ,X

n−
2 ,X

\n
3 , X1(n))

−H(X2(n)|M1:i,X
N
1 ,X

n−
2 ,X

\n
3 )

≥
N∑
n=1

H(X2(n)|M1:i−1,X
n−
1 ,X

n−
2 ,X

\n
3 , X1(n))

−H(X2(n)|M1:i,X
n−
1 ,X

n−
2 ,X

\n
3 , X1(n))

b3=

N∑
n=1

I(X2(n);Ui|U1:i−1X1(n))

For the first term in b1 we used conditioning reduces the en-
tropy, and for the second term we have
X2(n) ↔ M1:iX

N
1 X

n−
2 X

n+

3 ↔ X
n−
3 . In b2 we have

X2(n) ↔ M1:i−1X
n−
1 X

n−
2 X

\n
3 X1(n) ↔ X

n+

1 . See Fig-
ure 6 for the proof. In b3 we defined the auxiliaries Ui :=
{Mi} for i ≥ 2.

For i ≥ 2, and i odd we have

Ri ≥ H(Mi)

= I(XN
1 ,X

N
3 ;Mi|M1:i−1,X

N
2 )

=

N∑
n=1

H(X1(n)X3(n)|M1:i−1,X
N
2 ,X

n−
1 ,X

n+

3 )

−H(X1(n)X3(n)|M1:i,X
N
2 ,X

n−
1 ,X

n+

3 )

≥
N∑
n=1

H(X1(n))|M1:i−1,X
N
2 ,X

n−
1 ,X

n+

3 )

−H(X1(n)|M1:i,X
N
2 ,X

n−
1 ,X

n+

3 )

c1≥
N∑
n=1

H(X1(n))|M1:i−1,X
N
2 ,X

n−
1 ,X

\n
3 )

−H(X1(n)|M1:i,X
N
2 ,X

n−
1 ,X

\n
3 )

c2≥
N∑
n=1

H(X1(n))|M1:i−1,X
n−
2 ,X

n−
1 ,X

\n
3 , X2(n))

−H(X1(n)|M1:i,X
N
2 ,X

n−
1 ,X

\n
3 )

≥
N∑
n=1

H(X1(n))|M1:i−1,X
n−
2 ,X

n−
1 ,X

\n
3 , X2(n))

−H(X1(n)|M1:i,X
n−
2 ,X

n−
1 ,X

\n
3 , X2(n))

c3=

N∑
n=1

I(X1(n);Ui|U1:i−1X2(n))

For the first term in c1 we used conditioning reduces the en-
tropy, and for the second term we have
X1(n) ↔ M1:iX

N
2 X

n−
1 X

n+

3 ↔ X
n−
3 . In c2 we have

X1(n) ↔ M1:i−1X
n−
3 X

n−
1 X

\n
3 X2(n) ↔ X

n+

2 . See Fig-
ure 7 for the proof of Markov conditions. In c3 the auxiliaries
are chosen to be Ui := {Mi} for i ≥ 2.

With this choice of auxiliaries we can check that the
Markov conditions in equation (12) are obeyed. The first
Markov condition U1(n) ↔ X1(n) ↔ X2(n), X3(n) can be
verified using Figure 8 (left), thereforeM1,X

n−
1 ,X

\n
3 ,X

n−
2 ↔

X1(n) ↔ X2(n)X3(n) holds. For other rounds, the Markov
can be verified in Figure 8.
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This region has been derived for arbitrary t number of
rounds, but, in the next example, we restrict our attention to
two number of rounds to discuss the effect of overhearing the
first message by the second user before the second message is
transmitted. The following lemma is useful in providing the
explicit expression for this region.

Lemma 1. RD2
d is a convex region.

Proof. See section §5 for the proof.

In the next section, we evaluate and simplify the achiev-
able region for a particular family of message distributions.

4.1. Interactive binary sum computation with presence of
the side information

In this section we derive the rate-distortion region for a binary
sum computation of discrete symmetric binary sources sub-
ject to the Hamming distortion measure. In this case let XN

3

be a sequence of i.i.d. Bernoulli random variables, X3 ∼
Bern( 12 ). Let the variables XN

1 and XN
2 be observations

of XN
3 through independent binary-symmetric channels with

cross-over probabilities p1, and p2, respectively. Therefore,
(X1, X3) ∼ DSBS(p1), and (X2, X3) ∼ DSBS(p2), and
X1 ↔ X3 ↔ X2, as depicted in Fig. 4. The decoders aims to
compute Z = X1 ⊕X2 ⊕X3 subject to the hamming distor-

tion. That is, E(d(Z, Ẑ)) = p(Z 6= Ẑ) = h−1(H(Z ⊕ Ẑ)).
Next, we define the following region.

Definition 2. Assume p2 ≥ p1. For each value of D, we
define η(D) to be set of rates constructed as follows.

η(D) =
⋃

α,β,λ1,λ2

{
R

∣∣∣∣ R1 ≥ (λ1 + λ2) [h(p2 ∗ p1 ∗ α)− h(α)]
R2 ≥ λ1 [h(p2 ∗ p1 ∗ β)− h(β)]

}

where h is a binary entropy function and the region is defined
over all tuple (λ1, λ2, α, β), such that 0 ≤ λ1, λ2 ≤ 1, and
0 ≤ α ≤ p1, 0 ≤ β ≤ p2−p1

1−2p1 , and

D = λ1[α ∗ β] + λ2[p2 ∗ β] + (1− λ1 − λ2)[p1 ∗ p2].
(14)

Theorem 4. For computing the binary sum of three dou-
bly symmetric binary sources (X1, X3) ∼ DSBS(p1), and
(X2, X3) ∼ DSBS(p2) subject to the Hamming distortion,
we haveRD2

d(D) ⊆ η∗(D)

Proof. To prove the upper bound, we consider a particular
joint distribution of the sourcesX1, X2, X3, and the auxiliary
random variables U1, U2, and we evaluate the rate distortion
expression for this particular distribution. ForD ≥ 1

2 we sim-
ply let ĝ(U1, U2) = 0. IfD ≤ 1

2 , then we choose the distribu-
tions as follows. First, let (U1, U2) be degenerate, such that



U1 = U2 = ∅. Let ĝ(U1, U2, X3) = X3. Then, we get distor-
tion E [d(Z, ĝ(U1, U2, X3))] = E [d(X1 ⊕X2 ⊕X3, X3)] =
p1 ∗ p2. The proof is as follows.

E [d(X1 ⊕X2 ⊕X3, X3)] = p(X1 ⊕X2 ⊕X3 6= X3)

= p (X1 ⊕X2 ⊕X3 ⊕X3 = 1) = p(X1 ⊕X2 = 1)

= p(Z1 ⊕ Z2 = 1) = p1 ∗ p2

Hence, any distortion p1 ∗ p2 ≤ D ≤ 1
2 is achievable by

this scheme. Second, for D ≤ p1 ∗ p2, let U1 be the
output of a BSC(α), 0 ≤ α ≤ p1, with input X1 while
U2 = ∅. We define ĝ(U1, U2, X3) = U1. Thus, we get
the distortion E [d(Z, ĝ(U1, U2, X3))] = E [d(Z,U1)] =
E [d(X1 ⊕X2 ⊕X3, U1)] = p2 ∗α. Since X1⊕X2⊕X3 ↔
X1 ↔ U1, this can be proved using Mrs. Gerber’s Lemma

H(X1 ⊕X2 ⊕X3|U1) (15)

= h
(
h−1 (H(X1 ⊕X2 ⊕X3|X1)) ∗ h−1 (H(X1|U1))

)
.

To derive the first term in the right hand side of (15), we show
that X1 ⊕X2 ⊕X3 and X1 are related via a BSC(p2).

p(X1 ⊕X2 ⊕X3 6= X1) = p(X1 ⊕X2 ⊕X3 ⊕X1 = 1)

= p(X2 ⊕X3 = 1) = p(Z2 = 1) = p2 (16)

Substituting (16) in (15) we have,

H(X1 ⊕X2 ⊕X3|U1) = h(p2 ∗ α) (17)

With this scheme, any distortion p2 ≤ D < p1 ∗ p2 can be
achieved. Hence, the minimum rate for the first user is

R1(p2 ∗ α) = I(X1;U1|X2) = H(U1|X2)−H(U1|X1)

= h(p1 ∗ p2 ∗ α)− h(α) (18)

Finally, to achieve any distortion in 0 ≤ D < p2, let
U2 be the output of a BSC(β), 0 ≤ β ≤ p2−p1

1−2p1 , with in-
put X2 ⊕ U1, while U1 is the output of BSC(α) with input
X1. We define ĝ(U1, U2, X3) = U2 ⊕ X3. Thus, the distor-
tion will be E [d(Z, ĝ(U1, U2, X3))] = E [d(Z,U2 ⊕X3)] =
E [d(X1 ⊕X2 ⊕X3, U2 ⊕X3)]
= E [d(X1 ⊕X2, U2)] = α ∗ β. This can also be seen by
Mrs. Gerber’s Lemma, since X1 ⊕ X2 ↔ X2 ⊕ U1 ↔ U2,
and

H(X1 ⊕X2 ⊕X3|U2)

= h
(
h−1 (H(X1 ⊕X2|X2 ⊕ U1)) ∗ h−1 (H(X2 ⊕ U1|U2))

)
a
= h(α ∗ β) (19)

where in a we used the fact that H(X1 ⊕ X2|X2 ⊕ U1) =
H(X1|U1) Note that the upper bound for parameter β is de-
rived such that p1 ∗ p2−p11−2p1 = p2. As a result, this scheme is
achievable for any distortion 0 ≤ D ≤ p2. Therefore, the

minimum rate for the second user that can be achieved with
the distortion α ∗ β is

R2(α ∗ β) = I(X2;U2|U1X1) = H(U2|U1X1)−H(U2|X2U1)

b
= h(p1 ∗ p2 ∗ β)− h(β) (20)

Where in b we used the Markov chain, U2 ↔ X2U1 ↔ U1X1

and applied Mrs. Gerber’s lemma to H(U2|U1X1)

= h
(
h−1 (H(U2|X2, U1)) ∗ h−1 (H(X2, U1|U1X1))

)
= h(p1 ∗ p2 ∗ β) (21)

The remainder of the proof invokes convexity and considers a
combination of the three above scenarios.

5. PROOF OF LEMMA 1, CONVEXITY

LetDa andDb be two distortion values, and let {(U1,a, U2,a), ĝa},
and {(U1,b, U2,b), ĝb} be the variables that achieve the point
(Ra, Da) ∈ RD

t
, and (Rb, Db) ∈ RD

t
, in the closure

of the rate distortion region, respectively. Let Q be an in-
dependent time sharing random variable such that p(Q =
a) = λ. Define U1 = (Q,U1,Q), and U2 = (Q,U2,Q), and
ĝ(U1, U2, X3) = ĝQ(U1,Q, U2,Q, X3)

D = E[d(Z, Ẑ)] = E[d(Z, ĝ(U1, U2, X3)]

= p(Q = a)E[d(Z, ĝ(U1, U2, X3)|Q = a]

+ p(Q = b)E[d(Z, ĝ(U1, U2, X3)|Q = b]

= p(Q = a)E[d(Z, ĝa(U1,a, U2,a, X3)]

+ p(Q = b)E[d(Z, ĝb(U1,b, U2,b, X3)]

= λDa + (1− λ)Db (22)

The rate for the first round:

I(X1;U1|X2) = I(X1;U1)− I(X2;U1)

= H(X1)−H(X1|Q,U1,Q)−H(X2) +H(X2|Q,U1,Q)

= H(X1)− λH(X1|U1,a)− (1− λ)H(X1|U1,b)

−H(X2) + λH(X2|U1,a) + (1− λ)H(X2|U1,b)

= λ (I(X1;U1,a)− I(X2, U1,a))

+ (1− λ) (I(X1;U1,b)− I(X2, U1,b))

= λI(X1;U1,a|X2) + (1− λ)(I(X1;U1,b|X2)) (23)

The rate at the second round becomes,

I(X2;U2|U1X1) = H(X2|U1X1)−H(X2|U1U2X1)

= H(X2|U1,Q, Q,X1)−H(X2|U1,Q, U2,Q, Q,X1)

= λH(X2|U1,a, X1) + (1− λ)H(X2|U1,b, X1)

− λH(X2|U1,a, U2,a, X1) + (1− λ)H(X2|U1,b, U2,b, X1)

= λH(X2|U1,a, X1)− λH(X2|U1,a, U2,a, X1)

+ (1− λ)H(X2|U1,b, X1) + (1− λ)H(X2|U1,b, U2,b, X1)

= λI(X2;U2,a|U1,a, X1) + (1− λ)I(X2;U2,b|U1,b, X1)
(24)



We define W1 and W2 to be the auxiliaries that achieve the
the rate tuple R = (R1, R2) at the closure of the the rate
distortion region for distortion D defined in (22).

R1(D) = I(X1;W1|X2)
a1≤ I(X1;U1|X2)
a2= λI(X1;U1,a|X2) + (1− λ)(I(X1;U1,b|X2))

(25)

In step a1, we substitute W1 with auxiliary U1, because
(U1, U2) achieve distortion D but not necessarily achieve the
rates in the closure of the rate distortion region (minimum
rate). Step a2 follows from (23).

R2(D) = I(X2;W2|W1X1)

b1≤ I(X2;U2|U1X1)

b2=λI(X2;U2,a|U1,a, X1)+(1− λ)I(X2;U2,b|U1,b, X1)
(26)

In step b1 we use the the same argument as in a1, and step
b2 follows from (24). Recall that (U1,a, U2,a) were defined to
achieve distortion Da, and R(Da), and (U1,b, U2,b) were de-
fined to achieve distortion Db, and rate tuple R(Db). There-
fore, any point that achieves any distortion in between, (D),
should have its rate tuple greater than (R1(D), R2(D)). This
proves the convexity of the rate distortion region (12).

6. CONCLUSION
Building upon a newly proven rate distortion region for a
lossy interactive variants of the classical Körner Marton prob-
lem, this paper determined and presented the rate distortion
region for a lossy interactive distributed function computation
problem in which the observations being encoded are condi-
tionally independent given a side information at the decoder.
Additionally, simple expressions for achievable regions for
the special case of computing the sum of doubly symmetric
binary sources were presented. Future work will investigate
whether these achievable regions match the optimal region
dictated by the theorem.
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