

DRE	XEL UNIVERSITY - IOANNIS SAVIDIS GROUP
	3
	Degrees: B.S.E., Duke University
	M.S., University of Rochester
20	Ph.D., University of Rochester (2013)
	Research Interests
	Analysis, modeling, and design methodologies for high performance digital and mixed-signal integrated circuits; Emerging integrated circuit technologies; Electrical and thermal modeling and characterization, signal and
	power integrity, and power and clock delivery for 3-D IC technologies; hardware security (obfuscation and side-channel analysis); algorithms and methodologies for design automation including ML/AI based
	optimization; On-chip power management; Low-power circuit techniques; Algorithms and methodologies for
	secure IC design
	LABORATORY & TEAM
	- Seven Ph.D. students
	 Alec Aversa – Sequential digital circuit obfuscation
	- Vaibhav Venugopal Rao – Analog IC IP protection
	- Saran Phatharodom – Digital obfuscation metrics
	- Jeff Wu – Application of ML/AI to analog IC design
	- Ziyi Chen – Analog IP protection
	- Ashish Sharma – Heterogeneous circuit integration
	 Pratik Shrestha – Digital security and application of ML/AI to digital IC design
	- One B.S. student
	 Isabel Song (UPenn undergraduate) – ML/AI analog IC design
	- 2,000 square feet of dedicated research space
of Drevel	 Access to leading CAD software packages: Cadence (Virtuoso, Encounter, assure),
UNIVERSITY	Synopsys (Primetime, Hspice, Taurus), and Siemens Mentor Graphics (Calibre)

Г

Outline of Presentation

- Background introduction
- Machine learning techniques for analog EDA
- Optimization techniques for analog EDA
- Case studies
- Conclusions

Drexel UNIVERSITY

5

Outline of Presentation

- Background introduction
- Machine learning techniques for analog EDA
- Optimization techniques for analog EDA
- Case studies
- Conclusions

Drexel UNIVERSITY

			11
	Global Semice	onductor Sales and Gro	owth in 2021,2022
Analog segment had the largest growth		Growth Rate	Sales (billion)
different economic conditions	Analog	33.1%, 20.3%	74.0, 89.0
 Big demand for analog chips 	Logic	30.8%, 13.7%	154.8, 176.0
 Less cyclical than logic and memory 	Memory	30.9%, -15.4%	153.8, 130.0
Analog design productivity lags behind digital design by orders of magnitude	Devices / IC (black curves, blue c 10 ¹² 10 ¹¹ 10 ¹⁰	Analog design has becom bottleneck in the design of of the art microelectro	Devices / person-year (red cr f state- nics

Interests in Analog EDA

 Papers with keyword of 'analog circuit design automation' increasing with time

Number of IEEE Papers with keyword 'analog circuit design automation'

22

SDrexel

Outline of Presentation 24 Background introduction Machine learning techniques for analog EDA Background on machine learning Statistical learning algorithms Neural-network-based learning algorithms Optimization techniques for analog EDA Case studies Conclusions

24

Outline of Presentation 25 • Background introduction • Machine learning techniques for analog EDA • Background on machine learning • Statistical learning algorithms • Statistical learning algorithms • Neural-network-based learning algorithms • Optimization techniques for analog EDA • Case studies • Conclusions

Outline of Presentation 33 Background introduction Machine learning techniques for analog EDA Background on machine learning Statistical learning algorithms Neural-network-based learning algorithms Optimization techniques for analog EDA Case studies Conclusions

33

<text><list-item> Statistical Learning Algorithms statistical algorithms are predecessors of learning algorithms Algorithms widely utilized in EDA for decades: Linear regression models Gaussian process models K-nearest neighbors Support vector machines Tree-based models

Statistical Learning Algorithms Statistical algorithms are predecessors of learning algorithms Algorithms widely utilized in EDA for decades: Linear regression models Gaussian process models K-nearest neighbors Support vector machines Tree-based models

Statistical Learning Algorithms Statistical algorithms are predecessors of learning algorithms Algorithms widely utilized in EDA for decades: Linear regression models Gaussian process models K-nearest neighbors Support vector machines Tree-based models

Tree-based Models

Decision tree

• Trained by maximizing information gain $\sum_{i=p} -p * \log_2 p_i$, where p is the probability of class i

Ensemble of trees

- > Reduce overfitting resulting from a single tree
- Random forest
 - $\,{\scriptstyle \succ}\,$ For classification, return the class voted by most trees in ensemble
 - › For regression, take the mean of predictions of all trees in ensemble
- Gradient boost
 - > Usually provides highest accuracy among tree-based models

Advantages:

- Data pre-processing not required
- Fewer data required than neural networks
- > Interpretable tree structure provides additional design information
- Allows ranking of feature importance

Drexel UNIVERSITY

Outline of Presentation 44 Background introduction Machine learning techniques for analog EDA Background on machine learning Statistical learning algorithms Neural-network-based learning algorithms Optimization techniques for analog EDA Case studies Conclusions

44

Artificial Neural Networks (ANNs)

- > Fundamental reason for success of AI in the recent decade:
 - > Boost in algorithmic power: novel algorithms based on generalized neural network architecture
 - > Boost in computing power (which again benefits from the development of IC, EDA)
- Deep neural networks
 - > Depth is determined based on problem complexity and dataset size
 - Layers represent different levels of abstraction

Model Name	$n_{\rm params}$	$n_{\rm layers}$	$d_{ m model}$	$n_{\rm heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes 10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1 M	$2.0 imes 10^{-4}$
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	$1.6 imes 10^{-4}$
GPT-3 6.7B	6.7B	32	4096	32	128	2M	$1.2 imes 10^{-4}$
GPT-3 13B	13.0B	40	5140	40	128	2M	$1.0 imes 10^{-4}$
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$

- Population-Based
- Fitness-Oriented
- A fitness parameter to represent the quality of a solutionVariation-Driven
 - Crossover and mutation generates variants randomly
- Broad categories
 - Genetic algorithm
 - Particle swarm
 - Differential evolution
- ▶ ...

Population

Fitness Evaluation

Parent Selection

Crossover and Mutation

Offspring (Next-Generation Solutions)

Simulated Annealing

- > A global optimization technique by approximation
- Preferred when search space is discrete
- > Parameter: a temperature value that keeps decreasing
- temperature=initial temperature/(iteration+1)
- Steps:
 - \blacktriangleright Randomly initialize design variables and evaluate function value f_{old}
 - Sample again in the neighboring region and evaluate function value f_{new}
 - Action:
 - If function value improves, accept
 - If function value worsens, accept with probability $e^{-(f_{new}-f_{old})/temperature}$
- Advantage:
 - > Reduces chance of getting stuck at local optimum since worse candidates are accepted with certain probability

Drexel UNIVERSITY

Comparison of C	Optimization A	lgorithms fo	or Analog ED.	A	93
	Derivative-free?	Guarantee optimality?	Computational complexity	Allow prior knowledge (of distribution) ?	Tradeoff considerations
Gradient-based	No	Yes	Low	No	Yes
Evolution-based	Yes	No	Medium	No	Yes
Bayesian optimization	Yes	No	High	Yes	Yes
Reinforcement learning	Yes	No	High	Possibly	Not well formulated
Jrexel					

Graph Partitioning

- Objective of partitioning for digital physical design: minimize cut edges while balancing for partition sizes
- > Divide and conquer: place and route each partition separately before integration

- > Objective of partitioning of analog circuits before layout: identify circuit hierarchies
 - Grouping utilized as constraints for placement and routing
 - Example: match for symmetry
 - > Algorithms therefore differ from digital partitioning
 - Subgraph isomorphism

Reference: A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, "VLSI Physical Design: From Graph Partitioning to Timing Closure," Springer, 2011

Outline of Presentation

- Background introduction
- Machine learning techniques for analog EDA
- Optimization techniques for analog EDA

Case studies

- > Case study 1: component sizing of analog ICs
- > Case study 2: automated placement and routing
- Case study 3: prediction of interconnect impedance
- Case study 4: transfer learning for design migration
- Conclusions

Drexel UNIVERSITY

VCALT: Variation-aware Classification with Adaptive Labeling Thresholds for Analog Sizing

- > Apply classification to predict whether a candidate solution satisfies the specification
- > To address class imbalance: adaptively set the labeling thresholds
 - With an initial dataset,
 - If the design specification is a lower bound:
 - \cdot labeling threshold = min (design specification, ϵ percentile of the target metric in dataset)
 - If the design specification is an upper bound:
 - \triangleright labeling threshold = max (design specification, (100- ϵ) percentile of the target metric in dataset)

CONTRACTOR OF CO

_		Knowledge-based sizing	Optimization-based sizing
		Throwied Se Suscu Sizing	optimization based sizing
	Execution	Fast	Slow
М	anual effort required	High	Low
	Technology scaling	Requires update	Don't care
Optin	nality of design solutions	Sub-optimal	Optimal

Outline of Presentation

Background introduction

Machine learning techniques for analog EDA

- > Optimization techniques for analog EDA
- Case studies
 - > Case study 1: component sizing of analog ICs
 - > Case study 2: automated placement and routing
 - Case study 3: prediction of interconnect impedance
 - Case study 4: transfer learning for design migration

Conclusions

Drexel

117

GCN-based Approach for Symmetry Detection in Analog Circuits

- Algorithm: GCN trained on bipartite circuit graph
- > Symmetry is identified at primitive cell level, block level and system level
- Limitation 1: hierarchical information of blocks are often directly available from the netlist
- Limitation 2: training data required for each circuit type

en	ı state-of-ar	t analog synth	iesis platfor	ms require p	re-defined p	rocedural rul	es
		Programming Language	Open- source?	Performs hierarchy recognition	Automated constraint generation	Technology dependency	Silicon- proven?
	BAG	python	Yes	No	No	Independent	No
	ALIGN	python, C	Yes	Yes	Yes	Requires compatible tech files	Yes
	MAGICAL	Computation: C++, User interface and control: python	Yes	Yes	Yes	Requires compatible tech files	Yes

136 • Background introduction • Machine learning techniques for analog EDA • Optimization techniques for analog EDA • Case studies • Case study 1: component sizing of analog ICs • Case study 2: automated placement and routing • Case study 3: prediction of interconnect impedance • Case study 4: transfer learning for design migration • Conclusions

Error Range	Layout w/o parasitics	Designer's Estimation	Prediction w/ XGB	Prediction w ParaGraph
< 10%	4	6	17	44
10%-20%	0	17	14	10
20%-30%	5	18	4	8
30%-40%	35	2	7	4
40%-50%	14	6	9	1
> 50%	9	18	16	0
Mean	37.75%	>100%	32.14%	9.60%
Geometric Mean	29.01%	43.57%	15.46%	4.00%

Outline of Presentation 145 Background introduction Machine learning techniques for analog EDA Optimization techniques for analog EDA Case studies Case study 1: component sizing of analog ICs Case study 2: automated placement and routing Case study 3: prediction of interconnect impedance Case study 4: transfer learning for design migration Conclusions

157

Transfer Performance Modeling by Applying GNN and Transfer Learning

- > Train GNN for three amplifier topologies, test on the fourth topology
- Zero-shot learning: GNNs provide coarse estimates of the circuit performance
 GNNs result in less test errors than the baseline ANNs for 14 of the 20 cases
- Few-shot learning: fine-tuned GNNs with transfer learning provide an average reduction of 70.6% in test error (RMSE) as compared to ANN models

	Two-stage as Test	Three-stage as Test	Folded as Test	Telescopic as Test
Power	-83% / -88%	+300% / -75%	+47% / -10%	+449% / -94%
Gain	-48% / -77%	+29% / -61%	-21% / -66%	-19% / -78%
Slew Rate	-62% / -74%	-80% / -82%	-97% / -99%	-98% / -99%
CMRR	-50% / -70%	-55% / -61%	-43% / -60%	-78% / -81%
PSRR	-15% / -67%	+59% / -39%	+33% / -60%	-67% / -71%

* Scenario I / Scenario 2

Reference: Z. Wu and I. Savidis, "Transfer of Performance Models Across Analog Circuit Topologies with Graph Neural Networks," Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD, pp. 159-165, 2022

Outline of Presentation

- Background introduction
- Machine learning techniques for analog EDA
- > Optimization techniques for analog EDA
- Case studies
- Conclusions

Drexel UNIVERSITY

Future Directions

- Improve reliability, robustness, and interpretability of ML models for analog EDA
 More mature and standardized flow of analog synthesis
- > Strong AI for analog synthesis
 - > Current ML models identify correlation instead of causality among data
 - > Learning causality requires expert knowledge
 - Ideal if AI understands human design thinking while discovering new rules for the synthesis of analog circuits
- Meta-learning
 - Learning what to learn
 - > Learn parameter values for base (pre-trained) models for circuit tasks
 - > Learning which model to learn
 - › Auto select the ML and optimization algorithms best suited for a given circuit task
 - Learning how to learn
 - Auto hyperparameter tuning of ML models and generation of pipeline for analog EDA
 Parsing of standard circuit files (SPICE, DSPF, LEF, DEF...)

Drexel UNIVERSITY

161

Summary of AI-driven Analog EDA

- > ML is applied to improve, not replace heuristics in analog synthesis flow
 - > Heuristics with procedural synthesis still dominate latest analog EDA tools
- Benefits brought by ML for analog EDA:
 - > Reduced simulations required, reduced turnaround time
 - Design space exploration
 - Prediction of parasitic impedances, reliability and variability
 - > Guide optimization or direct generation of schematic and layout design
 - Migration and reuse of past designs
- Requirement on ML-based circuit models:
 - Sample efficiency
 - Generalization
 - Transferability
- > Optimization is backbone of automated analog design flow
- > Need to handle higher device count and more restrictive design rules

Drexel

165

References

- A. Sangiovanni-Vincentelli, "The Tides of EDA," IEEE Journals & Magazine, Vol. 20, No. 6, pp. 59-75, 2003
- > J. Scheible, "Optimized is Not Always Optimal," Proceedings of the International Symposium on Physical Design, pp. 151-158, 2022
- B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2001
- J. Crossley, et al., "BAG: A Designer-oriented Integrated Framework For The Development Of AMS Circuit Generators," Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 74–81, Nov. 2013
- » Q. Zhang et al., "An Open-Source And Autonomous Temperature Sensor Generator Verified With 64 Instances In SkyWater 130 nm For
- Comprehensive Design Space Exploration," IEEE Solid-State Circuits Letters, Vol. 5, No.1, pp. 174-177, 2022
- S. Su, et al., "Analog/Mixed-Signal Circuit Synthesis Enabled by the Advancements of Circuit Architectures and Machine Learning Algorithms," Proceedings of the Asia and South Pacific Design Automation Conference, pp.100–107, 2022
- A. Moubayed, M. Injadat, A. B. Nassif, H. Lutfiyya and A. Shami, "E-Learning: Challenges and Research Opportunities Using Machine Learning & Data Analytics," IEEE Access, Vol. 6, No.1, pp. 39117-39138, 2018
- X. Shangguan, H. Ma, A. C. Cangellaris and X. Chen, "Effect of Sampling Method on the Regression Accuracy for a High-Speed Link Problem," Proceedings of the IEEE Conference on Electrical Performance of Electronic Packaging and Systems, pp.1-3, 2021
- Z. Wu and I. Savidis, "CALT: Classification with Adaptive Labeling Thresholds for Analog Circuit Sizing," Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD, pp. 49–54, 2020
- T. McConaghy, P. Palmers, G. Gielen and M. Steyaert, "Automated Extraction Of Expert Knowledge In Analog Topology Selection And Sizing," Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 392-395,2008
- T. McConaghy, P. Palmers, G. Gielen and M. Steyaert, "Simultaneous Multi-Topology Multi-Objective Sizing Across Thousands of Analog Circuit Topologies," Proceedings of the ACM/IEEE Design Automation Conference, pp. 944-947, 2007
- T, Brown, et. al, "Language Models are Few-Shot Learners," Advances in Neural Information Processing Systems, Vol. 33, No. 1, pp.1877-1901, 2022
 J. K. Xu, W. Hu, J. Leskovec, and S. Jegelka, "How Powerful are Graph Neural Networks?," Proceedings of the International Conference on Learning Representations, pp. 1–17, 2019
- > K. Li, J. Malik, "Learning to optimize," Proceedings of the International Conference on Learning Representations, 2017

Drexel UNIVERSITY

References

- A. F. Budak, Z. Jiang, K. Zhu, A. Mirhoseini, A. Goldie and D. Z. Pan, "Reinforcement Learning for Electronic Design Automation: Case Studies and Perspectives," Proceedings of the Asia and South Pacific Design Automation Conference pp.500-505, 2022
- W. Lyu, et al., "An Efficient Bayesian Optimization Approach For Automated Optimization Of Analog Circuits," IEEE Transactions on Circuits and Systems, Vol. 65, No. 6, pp. 1954–1967, 2018
- N. Lourenço and N. Horta, "GENOM-POF: Multi-objective Evolutionary Synthesis Of Analog ICs With Corners Validation," Proceedings of the International Conference on Genetic and Evolutionary Computation, pp. 1119–1126, 2012
- R. Lourenço, N. Lourenço, N. Horta, "AIDA-CMK: Multi-Algorithm Optimization Kernel Applied To Analog IC Sizing," Springer, 2015
- F. Silveira, D. Flandre and P. G. A. Jespers, "A gm/Id Based Methodology For The Design Of CMOS Analog Circuits And Its Application To The Synthesis Of A Silicon-on-insulator Micropower OTA," IEEE Journal of Solid-State Circuits, Vol. 31, No. 9, pp. 1314-1319, 1996
- R. Frevert, et al., "Modeling and Simulation for RF System Design," Springer, pp.291, 2005
- Z. Wu and I. Savidis, "Variation-aware Analog Circuit Sizing with Classifier Chains," Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD, pp. 1–6, 2021
- > T. Dhar, et al., "ALIGN: A System for Automating Analog Layout," IEEE Design & Test, Vol. 38, No. 2, pp. 8-18, 2021
- H. Graeb, S. Zizala, J. Eckmueller, and K. Antreich, "The Sizing Rules Method For Analog Integrated Circuit Design," Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 343–349, 2001
- M. Liu, et al., "S3DET: Detecting System Symmetry Constraints for Analog Circuits with Graph Similarity," Proceedings of the Asia and South Pacific Design Automation Conference, pp. 193-198, 2020
- K. Kunal, et al., "GANA: Graph Convolutional Network Based Automated Netlist Annotation for Analog Circuits," Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, pp. 55–60, 2020
- K. Zhu, et al., "GeniusRoute: A New Analog Routing Paradigm Using Generative Neural Network Guidance," Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp.1-8, 2019
- B. Xu, et al., "MAGICAL: Toward Fully Automated Analog IC Layout Leveraging Human and Machine Intelligence: Invited Paper," Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp.1-8, 2019
- > A. Mirhoseini, et al., "A Graph Placement Methodology for Fast Chip Design," Nature, No. 594, pp. 207–212, 2021

Drexel UNIVERSITY

167

References

- » G. Pradipta, V. A. Chhabria, and S. S. Sapatnekar, "A Machine Learning Based Parasitic Extraction Tool," 2019
- B.W. Shook. et.al, "MLParest: Machine Learning based Parasitic Estimation for Custom Circuit Design," Proceedings of the ACM/IEEE Design Automation Conference, pp. 1-6, 2020
- H. Ren, G. F. Kokai, W. J. Turner and T. Ku. "ParaGraph: Layout Parasitics And Device Parameter Prediction Using Graph Neural Networks," Proceedings of the ACM/IEEE Design Automation Conference, pp. 1–6, 2020
- Z. Wu and I. Savidis, "Transfer Learning for Reuse of Analog Circuit Sizing Models Across Technology Nodes," Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1–5, 2022
- > Z. Wu and I. Savidis, "Transfer of Performance Models Across Analog Circuit Topologies with Graph Neural Networks," Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD, pp. 159-165, 2022
- H. Wang, et. al., "GCN-RL Circuit Designer: Transferable Transistor Sizing with Graph Neural Networks and Reinforcement Learning," Proceedings of the IEEE/ACM Design Automation Conference, pp. 1–6, 2020
- Y. Li et al., "A Customized Graph Neural Network Model for Guiding Analog IC Placement," Proceedings of the IEEE/ACM International Conference On Computer Aided Design, pp. 1-9, 2020
- A. B. Kahng, "Machine Learning Applications in Physical Design: Recent Results and Directions," Proceedings of the International Symposium on Physical Design, pp. 68-73, 2018
- M. Simonovsky and N. Komodakis, "Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs," Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 29–38, Jul. 2017
- > D. Kingma and M. Welling, "Auto-Encoding Variational Bayes", Proceedings of the International Conference on Learning Representations, 2014
- I. Goodfellow, et al., "Generative Adversarial Nets", Proceedings of the International Conference on Neural Information Processing System, Vol. 2, No.1, pp.,2672-2680, 2014
- > P. Shrestha and I. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect," Proceedings of the IEEE
- International Symposium on Circuits and Systems, 2023
- > A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, "VLSI Physical Design: From Graph Partitioning to Timing Closure," Springer, 2011

Drexel UNIVERSITY