
4:01 PM

1

Variation-aware Analog Circuit Sizing w
Emerging ML-AI Techniques for Analog EDA

Ioannis Savidis

1

1

Drexel University – Electrical & Computer Engineering 

Philadelphia, PA

Drexel University:
Founded in 1891 by financier and philanthropist  

Anthony J. Drexel
Location: four campuses: 3 in Philadelphia, 1 in 

New Jersey (Mt.  Laurel)
Student Enrollment: 15,346 undergraduates 

8,859 graduate and professional students
Student Geographic Distribution: Students 

come from 50 U.S. states and 130 foreign countries. 
Nearly 8% are international students

Bossone building
(home to College of
Engineering labs)
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M.S., University of Rochester
Ph.D., University of Rochester (2013)

Research Interests
Analysis, modeling, and design methodologies for high performance digital and mixed-signal integrated circuits; 
Emerging integrated circuit technologies; Electrical and thermal modeling and characterization, signal and 
power integrity, and power and clock delivery for 3-D IC technologies; hardware security (obfuscation and 
side-channel analysis); algorithms and methodologies for design automation including ML/AI based 
optimization; On-chip power management; Low-power circuit techniques;  Algorithms and methodologies for 
secure IC design

LABORATORY & TEAM
- Seven Ph.D. students 

- Alec Aversa – Sequential digital circuit obfuscation
- Vaibhav Venugopal Rao –Analog IC IP protection
- Saran Phatharodom – Digital obfuscation metrics
- Jeff Wu –Application of ML/AI to analog IC design 
- Ziyi Chen –Analog IP protection
- Ashish Sharma – Heterogeneous circuit integration
- Pratik Shrestha – Digital security and application of ML/AI to digital IC design

- One B.S. student
- Isabel Song (UPenn undergraduate) – ML/AI analog IC design

- 2,000 square feet of dedicated research space
- Access to leading CAD software packages: Cadence (Virtuoso, Encounter, assure), 

Synopsys (Primetime, Hspice, Taurus), and Siemens Mentor Graphics (Calibre)
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Drexel ICE Laboratory Research Overview

ML/AI Based EDA 

- Applied algorithms for clock 
tree synthesis 

- ML/AI algorithms for analog 
transistor sizing

- Classification with 
adaptive labeling

- SMT based optimization of 
transistor sizing

- Graph based representation of 
circuit netlist

Hardware 
Security and Trust

- Detection of hardware Trojans
- Real time monitoring

- Prevention of attack through design 
for trust

- Metrics to quantify security
- Algorithms and methodologies 

to obfuscate circuit design
- Techniques to protect analog 

circuits
- Obfuscation using field 

programmable analog arrays
- Parameter obfuscation

Heterogeneous 
2-D and 3-D 

Systems 
Integration

Low Power 
Circuit Design

-Near-threshold circuits (NTC) for low-power applications
- Implement circuit families including CMOS and 

current mode logic in NTC
-Leakage reuse for multi-voltage domain systems
-Energy efficient heterogeneous DNN accelerators
-Power management for multi-domain delivery
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Background: Electronic Design Automation (EDA)
7

MANUFACTURING CHECK

APPLICATION SOFTWARE

SIMULATION

DESIGN VERIFICATION

} EDA: a system of software solutions for the design of integrated circuits
} A wide range of applications: 

} High-performance Computing 
} Autonomous vehicle
} IoT
} AI
} ...

} Primary Tools/Applications:

7

A Remembrance of the Past: Timeline of (Digital) EDA Development
8

60,70's

'Age of Gods'
Invention

1964: DAC 
1971: GDS format
1978: GDS-II by Calma
Earliest P&R tools 

80,90's

'Age of Heros'
Implementation

ASICs
Mentor Graphics, 1981
Synopsys, 1986
Cadence,1988 
Verilog, 1984

00's

'Age of Men'
Integration

SoCs
Technical innovation slowdown
Vendor market maturing
Less risk-taking

2010-now

'Age of X? '

New devices (FinFETs, 
memristors)
2.5D, 3D integration

Reference: A. Sangiovanni-Vincentelli, "The Tides of EDA", IEEE Journals & Magazine, Vol. 20, No. 6, pp. 59-75, 2003

8
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Overview of Digital EDA

} Mature RTS-to-GDSII flow
} Frontend: technology independent standardized design descriptions

} Examples: VHDL, Verilog 
} Backend: physical implementation of circuits 

} Fabs provide libraries and simulation models for fab processes

} The high level of automation achieved in digital EDA results 
from abstraction
} Programmability at high level
} 'Divide and conquer' design strategy
} Modular design for reusability

9

Logical Synthesis

Floorplanning

Placement

Functional Design

Clock Network 
Synthesis

Routing

Signoff
- Parasitic Extraction
- Physical Verification
- Static Timing Analysis
- Power, IR-drop Analysis

9

Background: Analog IC Design and Production 

Growth Rate Sales (billion)

Analog 33.1%, 20.3% 74.0, 89.0

Logic 30.8%, 13.7% 154.8, 176.0

Memory 30.9%, -15.4% 153.8, 130.0

11

Global Semiconductor Sales and Growth in 2021,2022

Reference: 1. Semiconductor Industry Association
2. J. Scheible, "Optimized is Not Always Optimal," 

Proceedings of the International Symposium on 
Physical Design, pp. 151–158, 2022

} Analog segment had the largest growth 
in sales for 2021 and 2022, even under 
different economic conditions
} Big demand for analog chips
} Less cyclical than logic and memory

} Analog design productivity lags behind 
digital design by orders of magnitude
} Design productivity = number of devices 

integrated on a chip / required design effort 
in person-years
} Results in long time to market
} Significant design effort and experience required

11
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Typical Analog Synthesis Flow
12

} Top-down tasks 
} Specification formulation
} Topology selection
} Component sizing

} Tuning the sizes of the devices in an analog circuit to meet 
design specifications

} Bottom-up tasks of layout design
} Placement

} Device grouping based on matching and symmetry
} Determine coordinates of pins and devices in layout

} Routing
} Optimize routing under design constraints, e.g., area, design 

rules, matching

} Additional tasks: 
} Interconnect impedance prediction

} Reduce the gap between schematic simulation results and post-
layout results

} Compensation for effects of PVT variations and reliability 
issues

Design Specifications 
(functions, PPA target)

Topology Design

Layout Design

Component Sizing

Verification
(variation, corner, yield, 

reliability analysis)

12

Summary and Motivation for Automated Analog Synthesis

} Significant opportunities for analog design 
} Lack of productivity and design quality for 

analog EDA tools 
} Increased circuit complexity with next-

generation target application domains
} Bio-inspired computing
} 6G communications
} Autonomous vehicles (cars, UAVs, etc.)
} …

} Challenges to automate analog design
} Analog circuits are highly customized 

with various functionalities

13
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Broad Categories of Analog ICs

Layout of an µA709 operational amplifier, 1965 
Credit: Fairchild Camera & Instrument Corporation

14

Amplifiers
• Opamp
• OTA

RF Transceivers
• LNA
• VCO
• Mixers
• PLL
• DLL
• PA

Data Converters
• ADC
• DAC

Filters

Reference Generators
• Crystal oscillator
• Bandgap references
• Biasing structures
• Clock generators and drivers

14

Summary and Motivation for Automated Analog Synthsis

} Immense opportunities for analog design 
} Lack of productivity and design quality for analog EDA tools 
} Challenges to automate analog design

} Analog circuits are highly customized with various functionalities
} Additional design considerations beyond PPA

¨ Example: typical considerations for the design of an op-amp:

15

Reference: B. Razavi, "Design of Analog CMOS Integrated Circuits", McGraw-Hill, 2001

Noise

Input/Output 
Impedance

Linearity

Gain

Supply Voltage

Voltage SwingsSpeed

Power 
Dissipation

15
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Summary and Motivation for Automated Analog Synthsis

} Immense opportunities for analog design 
} Lack of productivity and design quality for analog EDA tools 
} Challenges to automate analog design

} Analog circuits are highly customized with various functionalities
} Additional design considerations beyond PPA
} Complex and non-linear circuit behaviors resulting from physics

¨ Design, performance, and process parameters all interrelated
¨ Example: noise factor of a low-noise amplifier:

16
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Does Digital Idea of Abstraction Apply to Analog EDA?

} Abstraction levels from low to high: device level       sub-block level       system level

} Past attempts
} Template-based 'standard' cells of analog blocks (amplifiers, comparators..)

¨ Berkeley Analog Generator

17

Reference: J. Crossley, et. al., “BAG: A Designer-oriented Integrated Framework For The Development Of AMS Circuit Generators,” Proceedings of the IEEE/ACM 
International Conference on Computer-Aided Design, pp. 74–81, Nov. 2013

17
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Template-based Analog Synthesis Tool: Berkeley Analog Generator (BAG)

} BAG follows pre-defined design procedures 
} Synopsys' Pycells as technology-independent 

parameterized layout cells
} Functionality:

} Technology characterization
} Schematic and testbench translation
} Simulator interfacing
} Physical verification and extraction
} Layout generation

} Limitation: 
} Procedural design processes are inflexible

} Require laborious setup and input by designers
} Solutions are suboptimal

18

Reference: J. Crossley, et. al., “BAG: A Designer-oriented Integrated Framework For The Development Of AMS Circuit Generators,” Proceedings of the IEEE/ACM 
International Conference on Computer-Aided Design, pp. 74–81, Nov. 2013

18

Does Digital Idea of Abstraction Apply to Analog EDA?

} Abstract levels from low to high: device level       sub-block level       system level

} Past attempts
} Template-based 'standard' cells of analog blocks (amplifiers, comparators..)

¨ Berkeley Analog Generator
} Verilog-AMS

¨ FASoC: Fully-Autonomous SoC Synthesis using Customizable Cell-Based Synthesizable 
Analog Circuits
• Applications: PLLs, power management, ADCs, and sensor interfaces
• Limitation: only work for 'digital analog' circuits 

19

Reference: Q. Zhang et al., "An Open-Source and Autonomous Temperature Sensor Generator Verified With 64 Instances in SkyWater 130 nm for 
Comprehensive Design Space Exploration," IEEE Solid-State Circuits Letters, Vol. 5, No.1, pp. 174-177, 2022

19
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Digitize AMS Circuits?

} Digitally-assisted AMS design
} Examples

□ Calibration of nonlinearity of ADCs
□ Digital predistortion and noise shaping for DACs

} Mostly-digital architectures
} Examples:

□ Data-converter-based transmitter and receiver
□ DPLL
□ DLDO

} Digital-like AMS operations
} 5 GS/s time-to-digital (TDC) based on inverters and flip-flops only
} Filters, amplifiers implemented with digital standard cells

} Advantage: auto synthesized with digital EDA flows
} Drawback: 

} Apply to mixed-signal circuits
} Does not apply to analog and RF circuits with high performance requirements 

□ Customization needed

20

Reference: S. Su, et al., "Analog/Mixed-Signal Circuit Synthesis Enabled by the Advancements of Circuit Architectures and Machine Learning Algorithms,"  
Proceedings of the Asia and South Pacific Design Automation Conference, pp.100–107, 2022

20

Does Digital Idea of Abstraction Apply to Analog EDA?

} Abstract levels from low to high: device level       sub-block level       system level

} Past attempts
} Template-based 'standard' cells of analog blocks (amplifiers, comparators, ...)

¨ Berkeley Analog Generator
} Verilog-AMS

¨ FASoC: Fully-Autonomous SoC Synthesis using Customizable Cell-Based Synthesizable 
Analog Circuits
§ PLLs, power management, ADCs, and sensor interfaces
§ Work for 'digital analog' circuits 

} Instead of attempting to standardize analog blocks or making analog circuits digital, focus on 
developing automated circuit design methodologies that allows customization

21
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Interests in Analog EDA

} Papers with keyword of 'analog circuit 
design automation' increasing with 
time

22

Number of IEEE Papers with keyword 'analog circuit design automation'

22

Overview of Heuristic Approaches for Analog Synthesis 

} Design with analytical equations or rules set by human designers
} Top-down hierarchical design flow

23

Knowledge-based Optimization-based

Analog Synthesis Approaches

} Optimization algorithms handle 
designer-provided specifications

} Procedural generation of design
¨ Rule-based
¨ Template-based

23
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Potential Solution for Analog EDA: Machine Learning

} Machine learning: train models to 
learn from data

} Leverage information from data to 
improve performance on prediction 
and generation tasks

} Diverse algorithm choices

26

Reference:  A. Moubayed, M. Injadat, A. B. Nassif, H. Lutfiyya and A. Shami, "E-Learning: Challenges and Research Opportunities Using Machine Learning & Data 
Analytics," IEEE Access, Vol. 6, No.1, pp. 39117-39138, 2018

26

Machine Learning for Analog EDA

} ML and AI have been included in latest commercial EDA tools
} Synopsys DSO.ai
} Cadence Cerebrus
} ...

} Additional capabilities provided by machine learning over heuristics
} Design space exploration

} Extract patterns of circuit parameters/characteristics from circuit data
} Predict key metrics through the design stages
} Guide the optimization/design process
} Generate prototype designs

} ML for analog EDA in two key steps: 
Learning                                +                                 Optimization

ML algorithms for circuit modeling                                  Optimization algorithms for circuit design

27

27
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Biggest Challenge of Applying ML to Analog EDA: Data

} Primary sources for circuit data:
} Random sampling from the design space (design of experiments) with circuit simulators

¨ Challenge: 
§ Numerical circuit solvers are computationally costly

oOne execution run of system-level simulation may take hours or days

} Expert designs generated by human designers or automation tools
¨ Challenge:

§ Design IPs are often proprietary 
§ Lack of benchmark circuits and standardized data format for analog EDA

} Vision/hope: open repository with production ready designs that are encrypted and 
secured but allow for ML design research by the community

29

29

The Biggest Challenge of Applying ML to Analog EDA: Data

} Primary sources for circuit data:
} Random sampling from the design space (design of experiments) with circuit simulators

¨ Challenge: 
§ Numerical circuit solvers are computationally costly

oOne execution run of system-level simulation may take hours or days

} Expert designs generated by human designers or automation tools
¨ Challenge:

§ Design IPs are often proprietary 
§ Lack of benchmark circuits and standardized data format for analog EDA

30
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Sampling (Design of Experiments) for Circuit Data Generation

} Gaussian random sampling
} Uniform random sampling
} Latin hypercube sampling (LHS)

} Divide design space into M equal intervals, sample from each interval
} Results show LHS performs best based on MSE and R-squared of models trained on 

moderate and large sample sizes

LHS                               Gaussian                                Uniform

31

Reference: X. Shangguan, H. Ma, A. C. Cangellaris and X. Chen, "Effect of Sampling Method on the Regression Accuracy for a High-Speed Link Problem," 
Proceedings of the IEEE Conference on Electrical Performance of Electronic Packaging and Systems, pp.1-3, 2021

31

Data Generation for ML Model Training for Analog Circuits

} Two types of ML models for inputs x and label y
} Discriminative models: learn mapping from x to y, i.e.,  p( y|x )
} Generative: learn a distribution over data, i.e., p( x, y )

} Primary sources of circuit data 
} Random sampling from the design space (design of experiments) 

} Unbiased
} Suitable for discriminative ML models
} Inappropriate for generative models because it is equivalent to learning 

from 'randomness'

} Past expert designs generated by human designers or prototype 
design automation tools
} Biased
} Suitable for generative ML models
} Inappropriate for discriminative models because data is 'biased' towards 

good design

32

Source: theaisummer.com

32
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Statistical Learning Algorithms

} Statistical algorithms are predecessors of learning algorithms

} Algorithms widely utilized in EDA for decades:
} Linear regression models
} Gaussian process models
} K-nearest neighbors
} Support vector machines
} Tree-based models

35

35
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Statistical Learning Algorithms

} Statistical algorithms are predecessors of learning algorithms

} Algorithms widely utilized in EDA for decades:
} Linear regression models
} Gaussian process models
} K-nearest neighbors
} Support vector machines
} Tree-based models

36

36

Linear Regression and Support Vector Machines

} For data D= { x, y }, a linear regression model is:

} Support vector machine:
} Decide a boundary with maximum distance from nearest points in each class

37

Source: baeldung.com
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Statistical Learning Algorithms

} Statistical algorithms are predecessors of learning algorithms

} Algorithms widely utilized in EDA for decades:
} Linear regression models
} Gaussian process models
} K-nearest neighbors
} Support vector machines
} Tree-based models

38

38

K-Nearest Neighbor Algorithm

} Classify based on distance 
between new data point and k
nearest known data points
} Distance metrics:

} Euclidean distance
} Manhattan distance
} Hamming distance
} ...

} Requires storage of all data
} 'Lazy learning'

} Advantages:
} Easy to implement and adapt
} Few hyperparameters 

} Disadvantages:
} Does not scale well to large dataset 

with high dimensionality
} Bottleneck in memory

39

Source: IBM.com

39
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Statistical Learning Algortihms

} Statistical algorithms are predecessors of learning algorithms

} Algorithms widely utilized in EDA for decades:
} Linear regression models
} Gaussian process models
} K-nearest neighbors
} Support vector machines
} Tree-based models

40

40

Tree-based Models

} Decision tree
} Trained by maximizing information gain                       , where p is the probability of class i

} Ensemble of trees 
} Reduce overfitting resulting from a single tree
} Random forest

} For classification, return the class voted by most trees in ensemble
} For regression, take the mean of predictions of all trees in ensemble

} Gradient boost
} Usually provides highest accuracy among tree-based models

} Advantages:
} Data pre-processing not required
} Fewer data required than neural networks
} Interpretable tree structure provides additional design information
} Allows ranking of feature importance

41

&−𝑝 ∗ log' 𝑝(
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Application 1: Decision Tree to Predict Noise Figure Based on Sizing
42

} Device sizes are generated with LHS 
} Performance (NF) is evaluated with SPICE 
} Tree structure shows design space 

partitioning 

Reference: Z. Wu and I. Savidis, “CALT: Classification with Adaptive Labeling Thresholds for Analog Circuit Sizing,” Proceedings of the ACM/IEEE 
Workshop on Machine Learning for CAD, pp. 49–54, 2020

42

Application 2: Decision Tree to Map From Specifications To Topology

} Data is generated from MOJITO
} MOJITO is an analog sizing platform 

that
} Optimizes across thousands of analog 

circuit topologies 
} Returns a set of sized topologies with 

performance tradeoffs

} Trained tree model effectively 
provides topology selection rules 
for the target technology

43

Reference: 1. T. McConaghy, P. Palmers, G. Gielen and M. Steyaert, "Automated Extraction Of Expert Knowledge In Analog Topology Selection And Sizing," 
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 392-395,2008

2. T. McConaghy, P. Palmers, G. Gielen and M. Steyaert, "Simultaneous Multi-Topology Multi-Objective Sizing Across Thousands of Analog Circuit 
Topologies," Proceedings of the ACM/IEEE Design Automation Conference, pp. 944-947, 2007

43
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Artificial Neural Networks (ANNs)

} Fundamental reason for success of AI in the recent decade:
} Boost in algorithmic power: novel algorithms based on generalized neural network architecture
} Boost in computing power (which again benefits from the development of IC, EDA)

} Deep neural networks
} Depth is determined based on problem complexity and dataset size
} Layers represent different levels of abstraction

46

Reference:  T, Brown, et. al, 'Language Models are Few-Shot Learners', Advances in Neural Information Processing Systems, Vol. 33, No. 1, pp.1877-1901, 2022

46
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Learning Scenarios Powered by Variants of ANNs

Differentiate by training scheme
} Supervised
} Semi-supervised
} Unsupervised
} Adversarial (GAN)
} Reinforcement
} Encoder-decoder

47

Differentiate by data format
} Multi-layer perceptrons (feedforward 

neural networks)
} Tabular data

} Convolutional neural networks
} Image data

} Graph neural networks
} Graph-structured data

} Recurrent neural networks
} Time-series data

X

Can combine any option from the left with any option from the right
Example: train a recurrent neural network in an adversarial approach

train a graph neural network in an unsupervised approach

47

Learning Scenarios Powered by Variants of ANNs

Differentiate by training scheme
} Supervised
} Semi-supervised
} Unsupervised
} Adversarial (GAN)
} Reinforcement
} Encoder-decoder

48

Differentiate by data format
} Multi-layer perceptrons (feedforward 

neural networks)
} Convolutional neural networks
} Graph neural networks
} Recurrent neural networks

X

Apply specialized filters for the input format

48
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Learning Scenarios Powered by Variants of ANNs

Differentiate by training scheme
} Supervised
} Semi-supervised
} Unsupervised
} Adversarial (GAN)
} Reinforcement
} Encoder-decoder

49

Differentiate by data format
} Multi-layer perceptrons (feedforward 

neural networks)
} Convolutional neural networks
} Graph neural networks
} Recurrent neural networks

X

49

Multi-layer Perceptron (MLP) ANNs

} Each input neuron represents a piece of the data (image pixel, transistor feature...)
} Each neuron performs logistic regression:

} A neural network maps from input neurons to output labels
} Works well for tabular data

50

I1

I2

H1

H2

o1

Input Layers Hidden Layers Output Layer

x1

x2

Bias

Weight

Weight

y1

ℎ-,/(𝑥) = 𝑓(𝜔0𝑥 + 𝑏)
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Example: Problem Formulation For A Circuit Sizing Task

} Objective: predict AC gain of an amplifier based on sizes of two transistors
} Intuitive problem formulation:

} Input features: two transistor sizes, M1, M2
} Output label: real-valued SPICE evaluation of gain 
} After data generation, train a simple MLP to map from device sizes to gain values

51

M1

M2

Gain

I1

I2

H1

H2

o1

Bias

Weight

Weight

Input Layers Hidden Layers Output Layer

51

Learning Scenarios Powered by Variants of ANNs

Differentiate by training scheme
} Supervised
} Semi-supervised
} Unsupervised
} Adversarial (GAN)
} Reinforcement
} Encoder-decoder

52

Differentiate by data format
} Multi-layer perceptrons (feedforward 

neural networks)
} Convolutional neural networks
} Graph neural networks
} Recurrent neural networks

X

52
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Image Data? Train Convolutional Neural Networks

} Circuit data in image format:
} Physical design

} Layout in GDSII 
} View of a gate netlist
} Photos of fabricated PCBs
} ...

} Convolutional neural networks:
} Each pixel is updated by the weighted sum of current pixel value and neighboring pixel values
} Mathematically, apply convolution between kernel and pixel values

53

Source: analyticsvidhya.com  

53

Multi-layer Perceptron (MLP) ANNs

} Each input neuron represents a piece of the data (image pixel, transistor feature...)
} Each neuron performs logistic regression:

} A neural network maps from input neurons to output labels
} Works well when data is tabular

54

I1

I2

H1

H2

o1

Input Layers Hidden Layers Output Layer

x1

x2

y1

Have We Missed Something With This Approach Of Circuit Modeling?
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Learning Scenarios Powered by Variants of ANNs

Differentiate by training scheme
} Supervised
} Semi-supervised
} Unsupervised
} Adversarial (GAN)
} Reinforcement
} Encoder-decoder

55

Differentiate by data format
} Multi-layer perceptrons (feedforward 

neural networks)
} Convolutional neural networks
} Graph neural networks
} Recurrent neural networks

X

55

Circuit As a Graph: Graph Neural Network for Modeling of Analog Circuits

} Features engineering is critical to the performance of ML models
} Diverse and arbitrary selection of features depending on designers' choices

} An analog circuit is modeled as a graph 
} Connectivity between devices (netlist information) is an important feature of a circuit 

} Often overlooked when utilizing MLPs and CNNs
} Manually crafting circuit features based on connectivity is challenging

} Solution: graph neural networks (GNNs)
} Automatically generate feature representations based on device connectivity
} Additional topological information improves prediction accuracy

56
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Graph Neural Networks

} Graph neural networks
} Graph = (Vertices,Edges)
} A graph is often irregular shaped
} Objective is to combine features of 

the current node and neighboring 
node features
} Similar to CNNs

57

Reference: Wu, Zonghan et al. “A Comprehensive Survey on Graph Neural Networks,” IEEE Transactions on Neural Networks and Learning Systems, Vol. 32, No. 1, pp. 4-24, 2021

} Convolutional neural networks
} Each pixel is a node
} An image is a regular-shaped grid
} Take a weighted average of node 

features (pixel values) along with 
neighboring node features

GNNs are generalized versions of CNNs
Circuit applications: instead of training based on numerical features of a circuit, learn based on 
circuit graphs with numerical features associated with devices or entire circuits

57

Vanilla Graph Convolutional Neural Networks (GCN)

Three primary steps:
1) Generate embeddings hi for each graph node i
} Map original feature vectors to vectors of a fixed dimension via linear neural network layers

Node embedding layers

58
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Vanilla Graph Convolutional Neural Networks (GCN)

Three primary steps:
1) Generate embeddings hi for each graph node i
} Map original feature vectors to vectors of a fixed dimension via linear neural network layers

2) Aggregate embeddings of each node with embeddings of the neighboring nodes

Aggregation layersNode embedding layers

New embedding of node i Current embedding of node jNonlinear activation function
Weight vector

Index set of direct neighboring nodes of node i

Normalization coefficient

Bias vector

59

59

Vanilla Graph Convolutional Neural Networks (GCN)

Three primary steps:
1) Generate embeddings hi for each graph node i
} Map original feature vectors to vectors of a fixed dimension via linear neural network layers

2) Aggregate embeddings of each node with embeddings of the neighboring nodes

3) Send final embeddings to linear neural network layers for target predictions

Aggregation layersNode embedding layers Linear layers for prediction

New embedding of node i Current embedding of node jNonlinear activation function
Weight vector

Index set of direct neighboring nodes of node i

Normalization coefficient

Bias vector

60
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Variants of Graph Neural Networks

} GNN variants such as GCN and GraphSAGE fail to distinguish certain 
simple graph structures with mean and max pooling

} Adopt sum-pooling

} Graph Isomorphism Networks (GIN):

} GIN generates distinguishable embeddings for different graph structures

61

importance of the center node relative to the neighboring nodes

Mean and max both fail

Max fails

Mean and max both failReference: J. K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are Graph Neural Networks?,” Proceedings of 
the International Conference on Learning Representations,  pp. 1–17, 2019

61

Challenges in Applying GNNs to Model Analog Circuits

} Lack of customized graph representation and learning algorithms to model analog 
circuits at the transistor level

} Accounting for different edge types 
} Accounting for circuit hierarchies

} Hypergraphs are more suited to represent circuit nets than traditional graphs 
} In a traditional graph, an edge only connects a pair of nodes
} In a hypergraph, a hyper-edge connects any number of nodes

} However, most GNN algorithms are designed for traditional graphs

62
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Challenges in Applying GNNs to Model Analog Circuits

} Lack of customized graph representation and learning algorithms to model analog 
circuits at the transistor level

} Accounting for different edge types
} Accounting for circuit hierarchies

} Hypergraphs are more suited to represent circuit nets than traditional graphs 
} In a traditional graph, an edge only connects a pair of nodes
} In a hypergraph, a hyper-edge connects any number of nodes

} However, most GNN algorithms are designed for traditional graphs

63

63

Edge-conditioned Convolution for Transistor-level Circuit Graph Modeling

} Each transistor as a graph node
} Six edge types defined to represent possible connections between transistors

} Drain-drain
} Gate-gate
} Source-source
} Drain-source
} Gate-source
} Drain-gate

} Edge-conditioned convolution:
} Step1: aggregate node embeddings based on each edge type (one MLP for each edge type)
} Step2: sum all individual edge-dependent embeddings

64

Reference: M. Simonovsky and N. Komodakis, “Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs,” Proceedings of 
the Conference on Computer Vision and Pattern Recognition, pp. 29–38, Jul. 2017
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Challenges in Applying GNNs to Model Analog Circuits

} Lack of customized graph representation and learning algorithms to model analog 
circuits at the transistor level

} Accounting for different edge types
} Accounting for circuit hierarchies

} Hypergraphs are more suited to represent circuit nets than traditional graphs 
} In a traditional graph, an edge only connects a pair of nodes
} In a hypergraph, a hyper-edge connects any number of nodes

} However, most GNN algorithms are designed for traditional graphs

65

65

Graph Convolution Based on Circuit Hierarchies 
66

} Model consists of two ECC layers and a Circuit-GIN layer:
} Circuit-GIN: GIN on a relational graph based on circuit hierarchy

} Circuit-GIN model outperforms base GCN model by distinguishing 
between four op-amp topology graphs by up to 16.7% in R-squared

Base GCN

Circuit-GIN

66
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Choosing between CNN and GNN for Modeling of Analog Circuits

} Physical layout is usually better modeled with images 
} Geometric information included 

} Device coordinates
} Pin coordinates
} Instance orientations
} ...

} Circuit topology is better represented with graphs
} Graph isomorphism
} Focus on topological connectivity information

67

67

Learning Scenarios Powered by Variants of ANNs

Differentiate by training scheme
} Supervised
} Semi-supervised
} Unsupervised
} Adversial (GAN)
} Reinforcement
} Encoder-decoder

68

Differentiate by data format
} Multi-layer perceptrons (feedforward 

neural networks)
} Convolutional neural networks
} Graph neural networks
} Recurrent neural networks

X

68
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Learning Scenarios Based On Availability of Training Labels 

} Supervised learning
} All training labels are available
} Learning tasks

} Classification
} Regression

} Unsupervised learning
} No labels are provided for the training set
} Learn inherent distribution
} Learning tasks

} Clustering
} Anomaly detection

} Semi-supervised learning
} Labels are provided for a part of the training set 

69

69

Learning Scenarios Powered by Variants of ANNs

Differentiate by training scheme
} Supervised
} Semi-supervised
} Unsupervised
} Adversial (GAN)
} Reinforcement
} Encoder-decoder

70

Differentiate by data format
} Multi-layer perceptrons (feedforward 

neural networks)
} Convolutional neural networks
} Graph neural networks
} Recurrent neural networks

X
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Generative Adversial Networks

} Discriminator: 

} Generator objective function: 

} Variants of GANs differ in objective function
} Suitable for prototype circuit design (layout) generation

71

Real data

Generator
(Decoder)

Discriminator
(Encoder) D(x)

Z

x

Cost

recognize real data recognize generated data 

optimize to fool discriminator

max𝑉 𝐷 =𝔼)~+!"#"()) 𝑙𝑜𝑔𝐷 𝑥 + 𝔼.~+$(.)[log(1 − 𝐷 𝐺(𝑧) )]

min𝑉 𝐺 =𝔼.~+$(.)[log(1 − 𝐷 𝐺(𝑧) )]

Reference: I. Goodfellow, et al., "Generative Adversarial Nets", Proceedings of the International Conference on Neural Information 
Processing System, Vol. 2, No.1, pp.,2672-2680, 2014

71

Practical Issues of Applying GAN

} Challenges in Training GANs
} Mode collapse: limited varieties of samples are generated 
} Diminished gradient
} Non-convergence
} Overfitting caused by imbalance between the generator and discriminator
} Highly sensitive to hyperparameters

} GAN for analog design generation
} Difficult to be applied on tabular data
} Suitable for image data

¨Placement images
¨Routing images

72
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Learning Scenarios Powered by Variants of ANNs

Differentiate by training scheme
} Supervised
} Semi-supervised
} Unsupervised
} Adversial (GAN)
} Reinforcement
} Encoder-decoder

73

Differentiate by data format
} Multi-layer perceptrons (feedforward 

neural networks)
} Convolutional neural networks
} Graph neural networks
} Recurrent neural networks

X

73

Variational Auto-Encoders (VAEs)

} Generative algorithm to encode distribution of 
training data, then generate new data with 
similar distribution

} Encoder: map input to a low-dimensional 
latent space
} Effectively dimensionality reduction

} Decoder: convert signal in latent space back to 
input space

} Difference from GAN:
} GAN generator takes noise as input

} Higher-quality generation
} Harder to train 

} VAE takes signal from the low-dimensional 
latent space as input
} Lower-quality generation
} Easier to train

74

Reference: D. Kingma and M. Welling, "Auto-Encoding Variational Bayes", Proceedings of the International Conference on Learning Representations, 2014

Latent Space DecoderEncoder
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} Machine learning techniques for analog EDA 

} Optimization techniques for analog EDA 
} Gradient-based algorithms
} Heuristic algorithms
} Learning-based algorithms

} Case studies

} Conclusions

Outline of Presentation
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75

Machine Learning for Analog EDA

} Additional capabilities provided by machine learning for analog EDA over heuristics
} Design space exploration

} Extract patterns of circuit parameters/characteristics from circuit data
} Predict key metrics through the design stages
} Guide the optimization/design process
} Generate circuit designs

} ML for analog EDA in two key steps: 
Learning                                +                                 Optimization

ML algorithms for circuit modeling                                  Optimization algorithms for circuit design

76
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Optimization Algorithms for EDA

} General flow of optimization process

77

} Gradient-based algorithms 

} Heuristic algorithms
} Greedy algorithms
} Divide and conquer 
} Dynamic programming  
} Network flow algorithms 
} Linear/integer programming 
} Evolution-based algorithms
} Simulated annealing

} Learning-based algorithms
} Reinforcement learning 
} Surrogate-assisted optimization algorithms 

Reference:  K. Li, J. Malik, "Learning to optimize," Proceedings of the International Conference on Learning Representations, 2017

77

Requirements on Optimization Algorithms for EDA

} Most optimization problems in physical design are NP-hard

} Optimization algorithms for EDA must have low time and space complexities, especially 
for physical design
} When device count exceeds 100K, quadratic algorithms fail
} Less of a problem for analog since device count is relatively small

} In physical design, key is to develop practical algorithms
} Trade-off with optimality guarantee

} For an analog circuit, multi-objective optimization is required for multiple performance 
parameters
} Trade-off between parameters (Pareto front) needed

78

Reference: N.A.Sherwani, "Algorithms for VLSI Physical Design Automation", Springer, 1995

78



4:01 PM

38

} Background introduction

} Machine learning techniques for analog EDA 

} Optimization techniques for analog EDA 
} Gradient-based algorithms
} Heuristic algorithms
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} Case studies

Outline of Presentation
79

79

Gradient-based Optimization Algorithms

} At each step, search direction is defined by the 
gradient of the function evaluation
} Intuitively, search along direction that reduces 

cost function at fastest rate
} Gradient descent

} First-order search of local optimum 

} Advantages: 
} Theoretical guarantee of optimality
} Fast execution for each iteration of search

} Limitation: 
} Requires explicit differentiable functions
} Slow convergence and local minima for non-convex 

search space

80

Source:  Interactivechaos.com

𝜃/ ≔ 𝜃/ − 𝛼
∂

∂𝜃/
𝐽(𝜃%, 𝜃0)
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} Background introduction

} Machine learning techniques for analog EDA 

} Optimization techniques for analog EDA 
} Gradient-based algorithms
} Heuristic algorithms
} Learning-based algorithms

} Case studies

Outline of Presentation
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81

Evolutionary Algorithms

} Characteristics of evolutionary algorithms            General flow of evolutionary algorithms
} Population-Based
} Fitness-Oriented

} A fitness parameter to represent the quality of a solution
} Variation-Driven

} Crossover and mutation generates variants randomly

} Broad categories
} Genetic algorithm
} Particle swarm
} Differential evolution
} ...

82

Population

Fitness Evaluation

Crossover and Mutation

Parent Selection

Offspring (Next-
Generation Solutions)
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Simulated Annealing

} A global optimization technique by approximation
} Preferred when search space is discrete
} Parameter: a temperature value that keeps decreasing 

} temperature=initial temperature/(iteration+1)
} Steps:

} Randomly initialize design variables and evaluate function value 𝑓1!$
} Sample again in the neighboring region and evaluate function value 𝑓234
} Action:

} If function value improves, accept
} If function value worsens, accept with probability

} Advantage: 
} Reduces chance of getting stuck at local optimum since worse candidates are accepted with certain probability

83

𝑒5(6%&'56()!)/839+3:;8<:3
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Reinforcement Learning for Optimization
84

Reference:  K. Li, J. Malik, "Learning to optimize," Proceedings of the International Conference on Learning Representations, 2017
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Reinforcement Learning (RL) for Optimization
86

} Define an agent to interact with the blackbox
design space
} Take action
} Receive feedback 

} Ingredients:
} A state space: 
} An action space:
} A cost function:
} A time horizon: T
} An initial state probability distribution: 
} A state transition probability distribution

} Objective: pick action (policy)
that maximizes expected cumulative rewards

Reference:  K. Li, J. Malik, "Learning to optimize," Proceedings of the International Conference on Learning Representations, 2017
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RL Formulation for Optimization on Analog Circuits

} Time horizon = number of controllable design parameters in the circuit
} Action: decide on the value of one design parameter at each step 
} After T steps, a set of candidate solution is generated
} Evaluate the solutions from a circuit solver (e.g., SPICE), calculate reward
} Maximize expected cumulative rewards = optimize target

action space = feasible solution set for the design variables

Circuit applications: 
} For placement optimization, move one instance each time

} Instances: standard cells and macros for digital, devices or circuit blocks for analog
} For analog sizing, set figure of merit as optimization target

} Action at each step is to determine the size of one transistor

87

Reference:  A. F. Budak, Z. Jiang, K. Zhu, A. Mirhoseini, A. Goldie and D. Z. Pan, "Reinforcement Learning for Electronic Design Automation: Case Studies and 
Perspectives," Proceedings of the Asia and South Pacific Design Automation Conference pp.500-505, 2022

87

Surrogate-assisted Blackbox Optimization 

} Two primary steps: 
} Step 1: Surrogate modeling

} Gaussian process models
} Neural networks
} SVMs
} ...

} Step 2: Active querying (adaptive sampling)
} Objective: sample points with maximum utility at minimum cost 

¨Cost: number of points, simulation time
} Methods:

¨Uncertainty sampling
¨Entropy

¨ Information gain 
¨Maximize KL divergence between posterior and prior

¨Query by committee
¨Response surface method

88
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Bayesian Optimization

} A type of surrogate-assisted blackbox optimization 
technique

} Gaussian process function as surrogate model 
} Acquisition function: determine next point to query 

while balancing exploitation and exploration of the 
search space
} Expected improvement (EI)

} Maximize expected improvement over current 
best value

} Upper confidence bound (UCB)
} Search areas with either best function value or 

largest uncertainty 

89

Reference:  W. Lyu, et al., “An Efficient Bayesian Optimization Approach For Automated Optimization Of Analog Circuits,” IEEE Transactions on 
Circuits and Systems, Vol. 65, No. 6, pp. 1954–1967, Jun. 2018

Exploration

Current minimal value

Observe 
data 

Train 
surrogate 

model

Maximize 
acquisition 
function

Sample 
next point

Add point 
to dataset

𝛼 𝑥; 𝜆 = 𝜇 𝑥 + 𝜆𝜎(𝑥)

𝑢 𝑥 = max(0, 𝑓′ − 𝑓(𝑥))

Exploitation

89

Example: Bayesian Optimization For the Sizing of An Amplifier

} Design parameter: W7 (transistor M7 width)
} Assuming all other transistors are sized

} Performance parameter: AC gain
} Specification: over 62dB

} As a reference, plot design space (gain vs W7) with a 
parametric sweep of W7:

90
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Animation of Sampling and Surrogate Function Update with Bayesian Optimization
91

Red dot: new sample at each iteration
Grey region: uncertainty over the region between sampled points

91

Animations of Sampling and Surrogate Function Update with Bayesian Optimization
92

} Qualified solution found 
to deliver gain of 62dB 
after 11 iterations

Sampled point at 11th iteration, turn out to be qualified

92
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Comparison of Optimization Algorithms for Analog EDA
93

Derivative-free? Guarantee 
optimality? 

Computational 
complexity

Allow prior 
knowledge (of 
distribution) 

?

Tradeoff 
considerations

Gradient-based No Yes Low No Yes

Evolution-based Yes No Medium No Yes

Bayesian optimization Yes No High Yes Yes

Reinforcement learning Yes No High Possibly Not well 
formulated

93

Graph-based Optimization Algorithms for EDA

} Algorithms specifically for graph-structured design space

} Types of graph applications:
} Graph partitioning

} Graph traversal (including shortest path search)
} Depth-first search

¨Search in order of increasing depth before returning to root node
} Breadth-first search

¨Search in order of distance from the source node
} Best-first search

¨Search guided by cost criteria

94

Reference:  A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, "VLSI Physical Design: From Graph Partitioning to Timing Closure," Springer, 2011

94



4:01 PM

46

Graph Partitioning

} Objective of partitioning for digital physical design: minimize cut edges while balancing for 
partition sizes
} Divide and conquer: place and route each partition separately before integration

} Objective of partitioning of analog circuits before layout: identify circuit hierarchies
} Grouping utilized as constraints for placement and routing

} Example: match for symmetry
} Algorithms therefore differ from digital partitioning

} Subgraph isomorphism

95

Reference:  A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, "VLSI Physical Design: From Graph Partitioning to Timing Closure," Springer, 2011

95

Shortest Path Search 

} Routing regions represented as a graph
} Dijkstra’s algorithm (a.k.a, maze routing): 

} Find shortest paths between a given node and all other nodes
} A* algorithm: 

} Find shortest path between a given node and a target node
} Given an initial and final cell on a square grid

¨g : cost of moving from the initial cell to a certain cell on grid
¨h : estimated cost of moving from the current cell to the final 

cell
} Euclidean distance
} Manhattan distance

¨ f = g + h
¨Procedure: select and move to the smallest f-valued cell

} Limitation: high space complexity as storage of all nodes in paths 
is required

96

Source: Wikipedia

A* search between bottom-left red 
dot to upper-right green dot

Reference:  A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, "VLSI Physical Design: From Graph Partitioning to Timing Closure," Springer, 2011
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Summary and Practical Considerations of Applying ML and Optimization for Analog EDA

} Training of a ML model itself requires optimization 
} Hyper-parameter tuning directly impacts model performance

} Total time cost = learning/training cost + optimization cost + simulation cost
} Compared with ML model training, optimization (guided by ML models) is more computationally costly
} Simulation acceleration is primarily job of EDA companies
} Improving learning and optimization algorithms is target of research

} Curse of dimensionality
} High feature dimensionality is problematic for all ML and optimization algorithms

} Effectiveness of EDA algorithms in practice relies on available computation power
} Potential breakthrough with quantum computing 
} More realistically, parallelization, neuromorphic computing...

97
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Case study 1: Component Sizing of Analog ICs
99

} Component sizing: tuning the sizes of the devices 
in an analog circuit to meet design specifications
} Example: transistor width, length, number of 

fins and fingers; resistor, capacitor values...
} A critical step in analog synthesis flow

} Utilize ML to:
} Predict circuit performance based on design 

parameters
} Predict layout-dependent effects and 

interconnect impedances to guide sizing 
optimization

Design Specifications 
(functions, PPA target)

Topology Design

Layout Design

Component Sizing

Verification
(variation, corner analysis)

99

100

Knowledge-based

Optimization-based

Simulation-basedEquation-based

Classification of Analog Sizing Techniques in Literature

Analog Sizing Techniques
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Classification of Analog Sizing Techniques in Literature

} Knowledge-based sizing
} Pre-designed plans consisting of design 

equations and procedures

101

Reference: R. Lourenço, N. Lourenço, N. Horta, "AIDA-CMK: Multi-Algorithm Optimization Kernel Applied to Analog IC Sizing", Springer, 2015

} Optimization-based sizing
} Optimization problems formulated based on

} Circuit equations
} Simulation data

101

102

Knowledge-based

Optimization-based

Simulation-basedEquation-based

Classification of Analog Sizing Techniques in Literature

Analog Sizing Techniques
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Equation-based Sizing Approaches

} Circuit equations linking design parameters with performance parameters
} Directly: device sizes, biasing voltages 
} Indirectly: gm/Id , inversion coefficient

} gm/Id: efficiency to translate current (power) into transconductance
} gm/Id versus Id/(W/L) (e.g., normalized current) is a unique characteristic of a transistor 
} Directly related to circuit performance
} Works for all transistor operating regions

103

Reference: F. Silveira, D. Flandre and P. G. A. Jespers, "A gm/Id Based Methodology For The Design Of CMOS Analog Circuits And Its Application To The 
Synthesis Of A Silicon-on-insulator Micropower OTA," IEEE Journal of Solid-State Circuits, Vol. 31, No. 9, pp. 1314-1319, 1996
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Knowledge-based

Optimization-based

Simulation-basedEquation-based

Classification of Analog Sizing Techniques in Literature

Analog Sizing Techniques
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Reference: R. Frevert, et al., "Modeling and Simulation for RF System Design", Springer, pp.291, 2005

Simulation-based Optimization for Analog Circuit Sizing

Treat the circuit as a blackbox
} Train surrogate models to map from the 

design space to the performance space
} Simulation-based sizing in two primary 

steps: 
Performance modeling + Optimization

} No design equations needed
} No discrepancy between theoretical and 

simulated results

Challenges:
} Circuit simulations with numerical solvers 

are expensive
} Need to improve sample efficiency

} Non-interpretable design processes

105

105

Practical Considerations of Simulation-based Sizing

} Two types of design loops:

} Batch-mode 'flat' design loop
¨Sample many points at each iteration
¨Reduced overhead of read/write data files, but may not be the most sample-

efficient (total number of simulated points)
¨Suitable for medium-cost circuit block simulation (e.g., op-amp)

} Single-mode 'long sequential' design loop
¨Sample and query one point each iteration
¨Most efficient in total number of points simulated, but may not be the fastest
¨Suitable for high-cost system-level circuit simulation, (e.g., PLL)

106
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GENOM-POF: Multi-objective Evolutionary Synthesis of Analog ICs with Corners

} A multi-objective framework for the sizing of analog circuits based on 
evolutionary optimization algorithms
} POF: Pareto optimal front
} Optimization algorithm: genetic algorithm NSGA-II

} Inputs: Circuit netlist, testbench, design variables, design specifications
} Output: Sizing of devices
} Problem formulation 

} f: objective function
} g: constraints
} x: design variables

107

Reference: N. Lourenço and N. Horta, “GENOM-POF: Multi-objective Evolutionary Synthesis Of Analog ICs With Corners Validation,” Proceedings of the 
International Conference on Genetic and Evolutionary Computation, pp. 1119– 1126, 2012

107

Compensation for Effects of Variations on Circuit Performance
108

} Simulation approaches
} Monte Carlo simulation
} Corner analysis

} Proposed methods for compensating for the effects of variation on circuit performance 
} Method 1: Evaluate the circuit performance at all corners of interest
} Method 2: Optimize for typical corner first, then use typical-corner sizing as starting points to 

optimize for other corners

Reference: N. Lourenço and N. Horta, “GENOM-POF: Multi-objective Evolutionary Synthesis Of Analog ICs With Corners Validation,” Proceedings of the 
International Conference on Genetic and Evolutionary Computation, pp. 1119– 1126, 2012

108



4:01 PM

53

Simulation Results for Sizing an Op-amp in 180 nm with GENOM-POF
109

} 15 design variables
} Accounting for combinations of three process corners and three temperature corners
} Two target performance metrics: area, power

Reference: N. Lourenço and N. Horta, “GENOM-POF: Multi-objective Evolutionary Synthesis Of Analog ICs With Corners Validation,” Proceedings of the 
International Conference on Genetic and Evolutionary Computation, pp. 1119– 1126, 2012

109

Simulation Results for Sizing an Op-amp in 180 nm with GENOM-POF

} Compared with starting with all corners 
(method 1), starting with the typical 
corner, then optimizing for remaining 
corners (method 2) provides better 
solutions
} More optimal performance 
} Faster execution

110

Start with all corners Start with typical, then remaining corners

Area (μ𝑚') 3.5 2.08

Power (mW) 2.06 1.76

Time (s) 572 227

Reference: N. Lourenço and N. Horta, “GENOM-POF: Multi-objective Evolutionary Synthesis Of Analog ICs With Corners Validation,” Proceedings of the 
International Conference on Genetic and Evolutionary Computation, pp. 1119– 1126, 2012

110



4:01 PM

54

An Efficient Bayesian Optimization Approach (WEIBO) for Sizing a Three-stage Amplifier
111

} Algorithm: Bayesian optimization
} Weighted Expected Improvement (WEI) 

} After initial sampling, a random weight 
vector w is generated to construct the WEI 
acquisition function for the surrogate-
assisted optimization problem

} 24 design variables
} WEIBO delivers the optimal Iq

} Second highest sample efficiency

Reference:  W. Lyu, P. Xue, F. Yang, C. Yan, Z. Hong, X. Zeng, and D. Zhou, “An efficient bayesian optimization approach for automated 
optimization of analog circuits,” IEEE Transactions on Circuits and Systems, Vol. 65, No. 6, pp. 1954–1967, 2018

111

VCALT: Variation-aware Classification with Adaptive Labeling Thresholds for Analog Sizing

} Apply classification to predict whether a candidate solution satisfies the specification
} To address class imbalance: adaptively set the labeling thresholds 

} With an initial dataset,
} If the design specification is a lower bound:
} labeling threshold = min (design specification, 𝜖 percentile of the target metric in dataset)

} If the design specification is an upper bound:
} labeling threshold = max (design specification, (100-𝜖) percentile of the target metric in 

dataset)

112

Reference: Z. Wu and I. Savidis, “Variation-aware Analog Circuit Sizing with Classifier Chains,” Proceedings of the ACM/IEEE 
Workshop on Machine Learning for CAD, pp. 1–6, 2021
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Design Flow of VCALT

Optimization-based active querying:

} Adaptively set labeling thresholds
} Search for solutions that simultaneously 

maximize the output probability scores of 
classifiers for specification and robustness 
prediction:

} Robustness parameter: performance 
fluctuations of the circuit across all corners

113

113

Apply VCALT to the Design of a Low-noise Amplifier in 65 nm Technology
114

} Design Constraints

} Include constraints for robustness
} 5 process corners and 3 temperature corners

(TT, FF, SS, SF, FS) * (20°C, 80°C, 120°C)
} Design Specifications

Performance: Robustness:

Reference: Z. Wu and I. Savidis, “Variation-aware Analog Circuit Sizing with Classifier Chains,” Proceedings of the ACM/IEEE 
Workshop on Machine Learning for CAD, pp. 1–6, 2021
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Distribution of Standard Deviations of Performance Parameters across 15 Corners 
in the Initial Dataset

115

} Without accounting for robustness, 
design solutions have large 
fluctuations in circuit performance 
over different corners

} Classifiers to predict and select 
robust candidate solutions
} Thresholds on the standard deviations 

are set by the designer

Noise Figure

IP3Gain

Power

115

Comparison between Sizing Techniques
116

Knowledge-based sizing Optimization-based sizing

Execution Fast Slow

Manual effort required High Low

Technology scaling Requires update Don't care

Optimality of design solutions Sub-optimal Optimal
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Case Study 2: Automated Placement and Routing

Primary considerations for digital P&R:
} Area minimization 

} Equivalent to wirelength minimization in most cases
} Design rule constraints

Additional considerations for analog P&R:
} Interconnect impedance 

} IR drop
} Signal coupling

} Matching
} Symmetry

} To reduce device mismatch in differential pairs
} Length-matching
} Impedance-matching

118
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Breakdown of Analog Layout Automation 
119

Design Specifications 
(functions, PPA target)

Topology Design

Layout Design

Component Sizing

Verification
(variation, corner, yield, 

reliability analysis)

Constraint Formulation

Placement

Routing

Parasitic 
Prediction

Placement Quality 
Prediction

Parasitic Extraction and 
Layout Quality Evaluation

Netlist Design Rules

119

Analog Circuit Hierarchies

} Four primary levels of an analog circuit
} Individual device level
} Sub-block level

} Differential pairs 
} Current mirrors
} ...

} Sub-circuit level
} OTA
} VCO
} ...

} System level
} RF transceiver
} Data converter

120

Reference:  T. Dhar, et al., "ALIGN: A System for Automating Analog Layout," IEEE Design & Test, Vol. 38, No. 2, pp. 8-18, 2021
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Motivation to Perform Device Grouping and Circuit Hierarchy Recognition

} Human designers recognize analog 
subblocks 
} Account for device grouping and hierarchies 

when performing layout
} Match devices for symmetry 

} Heuristic techniques to recognize sub-
circuits
} Library-based: match with a library 

enumerating possible topologies
} Rule-based: programmed rules to recognize 

sub-circuits

} Limitation of heuristic techniques: 
} Exhaustive enumeration of circuit blocks or 

recognition rules is often infeasible

121

Constraint Formulation

Placement

Routing

Parasitic 
Prediction

Placement Quality 
Prediction
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Knowledge-based Constraint Formulation: Sizing Rules Method

} A library of analog building blocks 
implemented based on a hierarchical set of 
circuit components
} Allows for subblock recognition and structural 

synthesis 

122

Subblock recognition of a folded cascode amplifier

Reference:  H. Graeb, S. Zizala, J. Eckmueller, and K. Antreich, “The Sizing Rules Method For Analog Integrated Circuit Design,” 
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 343–349, 2001
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Sizing Rules Method

} Constraints on four types of circuit properties

} 30 generic constraints listed for the circuit subblocks
} Examples of sizing rules:

} Level 0: Constraints on transistor biasing
} Level 2: Symmetry and matching constraints on current mirrors

123

Reference:  H. Graeb, S. Zizala, J. Eckmueller, and K. Antreich, “The Sizing Rules Method For Analog Integrated Circuit Design,” 
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 343–349, 2001

123

Analytical Approach for Subgraph Matching to Recognize Circuit Hierarchies

} Kolmogorov-Smirnov (K-S) test
} Measures the similarity between the eigenvalue distributions of two graphs

} Higher score indicates higher similarity between the graphs:
, where F are cumulative distribution functions

} Step 1: Compute eigenvalues of the two graph Laplacian matrices 
} Step 2. Apply K-S test on the underlying distributions
} Step 3. The resulting k-value of the K-S test is used as the graph similarity score

124

Reference: M. Liu, et al., "S3DET: Detecting System Symmetry Constraints for Analog Circuits with Graph Similarity," Proceedings of 
the Asia and South Pacific Design Automation Conference, pp. 193-198, 2020 

𝐷2 = 𝑠𝑢𝑝 |𝐹0,2 𝑥 − 𝐹',9(𝑥)|
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GCN-based Approach for Symmetry Detection in Analog Circuits

} Algorithm: GCN trained on bipartite circuit graph
} Symmetry is identified at primitive cell level, block level and system level
} Limitation 1: hierarchical information of blocks are often directly available from the netlist
} Limitation 2: training data required for each circuit type

125

Reference: K. Kunal, et. al., “GANA: Graph Convolutional Network Based Automated Netlist Annotation For Analog Circuits,” 
Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, pp. 55–60, 2020  

125

Analog Placement

} Analog placement: before routing, determine 
the locations of each instance

} Objective: minimize area and expected 
wirelength, mitigate layout effects on 
performance

} Heuristic approach:
} Step 1: Represent a placement solution 

with a data structure
} Examples:

¨O-tree
¨Segment tree

} Step 2: Apply optimization algorithms to 
perturb the data structure in search of 
optimal solutions
} Mixed integer linear programming 
} Nonlinear programming 
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Motivation to Predict Placement Quality

} Example: difference between results of 
schematic simulation and post-layout 
simulation of an LNA design 

127

Parameter Schematic Layout

Frequency 2.4 GHz 2.53 G

Gain (S21) 15.3 dB 13.2 dB

NF 2.8 dB 3.5 dB

IIP3 -5 dBm -7.3 dBm
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Analog Routing

} Objective: minimize wirelength and area while optimizing 
circuit performance

} Primary considerations (constraints for optimization)
} Design rules

} Size rules (e.g., minimum width)
} Separation rules
} Overlap rules

} Matching for symmetry
} Example: common-centroid design of differential 

pairs
} Impedance-matching

} Effects of interconnect impedance (R,L,C) on 
performance parameters
} Often not translating to geometric constraints directly
} Example: minimizing wirelength does not necessarily 

result in optimal performance 

128

Source  Semiengineering.com

1,000

10,000

100,000

100

Count

Technology

128



4:01 PM

63

GeniousRoute: ML-guided Routing

} Algorithm: Variational auto-encoders (VAEs) trained on layout images
} Encoder: map input image to low-dimensional space
} Decoder: generate routing guidance
} Label: routing region of nets

} Routing prediction: for a given placement, VAE predicts the probability map that a wire is 
placed in a region

} Routing algorithm: A∗ search algorithm guided by the trained VAE model
} Limitation: GeniusRoute is trained on a dataset consisting of comparators and amplifiers 

without generalizing to other analog circuit types

129

ground-truth

inference

Reference:  K. Zhu. et al., "GeniusRoute: A New Analog Routing Paradigm Using Generative Neural Network Guidance," Proceedings 
of the IEEE/ACM International Conference on Computer-Aided Design, pp.1-8, 2019
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ALIGN: A System for Automating Analog Layout

} Translation of a SPICE-level netlist into a physical layout
} Input: sized netlist of the topology, specifications, PDK description
} Output: GDSII of layout
} Bottom-up approach with a mix of algorithmic techniques, template-driven design, and ML

} Highlight: 
} 24-hour turnaround with no human in the loop
} Accounts for circuit hierarchies
} Accounts for analog layout techniques (e.g., common centroid layout)

130

Reference:  T. Dhar, et al., "ALIGN: A System for Automating Analog Layout," IEEE Design & Test, Vol. 38, No. 2, pp. 8-18, 2021
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Synthesis Steps of ALIGN

} Design Rule abstraction
} Constraints from PDK 

} Netlist Auto-annotation
} Groups transistors and passives in the input netlist 

into building blocks and identifies geometric 
constraints on the layout of each block 

} Electrical Constraint Generation 
} Performance constraints turned into layout 

constraints, such as the maximum allowable route 
length

} Parameterized layout generation of primitives 
} Parameters: transistor size, capacitor size, resistor 

size
} Block assembly 

} Place and route all blocks based on design 
hierarchy

131

Reference:  T. Dhar, et al., "ALIGN: A System for Automating Analog Layout," IEEE Design & Test, Vol. 38, No. 2, pp. 8-18, 2021

131

MAGICAL: Machine Generated Analog IC Layout

} Netlist to GDSII synthesis flow 
for analog circuits

} Core placement algorithm:
} Non-linear programming-based 

global placer 
} Linear programming-based 

legalizer
} Core routing algorithm:

} Obstacle-aware path-finding 
algorithm searching the feasible 
routing paths 

} Highlight: silicon-proven with 
TSMC 40nm 1GS/s delta-sigma 
ADC

132

Reference: B. Xu, et al., "MAGICAL: Toward Fully Automated Analog IC Layout Leveraging Human and Machine Intelligence: Invited Paper," Proceedings of the 
IEEE/ACM International Conference on Computer-Aided Design, pp.1-8, 2019
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Automated Cell Placement By Google 

} Primarily for digital cell placement optimization with RL and GNN
} Applications: design google accelerator chips (TPUs)

} RL for placing macros, heuristics to place standard cells
} RL reward: expected wirelength (i.e., HPWL) and expected congestion

} Edge-based GNN operate on embeddings of placed partial graph and candidate node

133

Reference:  A. Mirhoseini, et al., "A Graph Placement Methodology for Fast Chip Design", Nature, No. 594, pp. 207–212, 2021

133

Various Learning Scenarios Powered by Variants of ANNs

Differentiate by training scheme
} Supervised
} Semi-supervised
} Unsupervised
} Adversial (GAN)
} Reinforcement
} Encoder-decoder

134

Differentiate by data format
} Multi-layer perceptrons (feedforward 

neural networks)
} Convolutional neural networks
} Graph neural networks
} Recurrent neural networks

X

Can combine any option from the left with any option from the right
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Comparison of Analog Synthesis Platforms

} Even state-of-art analog synthesis platforms require pre-defined procedural rules

Programming 
Language

Open-
source?

Performs 
hierarchy 

recognition

Automated 
constraint 
generation

Technology 
dependency

Silicon-
proven?

BAG python Yes No No Independent No

ALIGN python, C Yes Yes Yes Requires 
compatible 
tech files

Yes

MAGICAL Computation: 
C++,

User interface 
and control: 

python

Yes Yes Yes Requires 
compatible 
tech files

Yes

135
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Case Study 3: Prediction of Interconnect Impedance

} Interconnect impedances have big impact 
on circuit performance
} Results in gap between schematic and 

layout simulation results
} Most interconnect models are analytical

} Few ML-based techniques
} Apply ML to predict parasitic impedances

} Reduce error between pre-layout and 
post-layout simulation
} Guide placement and routing

} Reduce parasitic extraction simulations 
required

} Predict post-routing interconnect values 
at different stages of analog synthesis
} At schematic level
} At placement level

137
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A Machine Learning Based Parasitic Extraction Tool 

} Algorithm: regression 
} Target circuit parameters for prediction: resistance, capacitance to ground, coupling, 

crossover, and crossunder capacitance of a net
} Training data is generated from Cadence Innovus with design of experiment (DOE)

} Not exclusively for analog but provides physical modeling of interconnect capacitances 
} Regression function is fixed

} Only fitting regression parameters on data
} Example: coupling capacitance expression

} Inflexible to model interconnects at advanced technologies
} No results reported

138

Reference: G. Pradipta, V. A. Chhabria, and S. S. Sapatnekar, "A Machine Learning Based Parasitic Extraction Tool", 2019 

138



4:01 PM

68

139

Parasitic Prediction Framework

• A digital EDA pipeline for
• Parsing standard files of parasitic extraction 
• Training GNN models for estimation of parasitic values on interconnect segments

Reference: P. Shrestha and I. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect", Proceedings of the IEEE
International Symposium on Circuits and Systems, 2023 

139

140

• Generate physical design data for each design stage
• Multiple data files generated: Verilog file, DEF file, SPEF file

Parasitic Prediction Framework: Dataset Generation

Reference: P. Shrestha and I. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect", Proceedings of the IEEE
International Symposium on Circuits and Systems, 2023 
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141

• Utilize netlist and SPEF reports
• Convert into interconnect spatial graphs
• Populate with node features

Parasitic Prediction Framework: Graph Representation

Reference: P. Shrestha and I. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect", Proceedings of the IEEE
International Symposium on Circuits and Systems, 2023 

141

MLParest: ML-based Parasitic Estimation for Custom Circuit Design 

} Algorithm: random forest
} Apply fixed interconnect star model

} Error between pre-layout and post-layout circuit simulation is reduced from 37% 
to 8% on benchmark analog circuits

} Limitation: inflexibility of the interconnect model
} Only effective for timing prediction

142

Reference: B.W. Shook. et.al, "MLParest: Machine Learning based Parasitic Estimation for Custom Circuit Design", Proceedings of the 
ACM/IEEE Design Automation Conference, pp. 1-6, 2020 
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ParaGraph: Layout Parasitics and Device Parameter Prediction with GNNs

} Graph representation of a circuit
} Heterogeneous graph: devices and nets both as graph 

nodes 
} Multiple sub-models for different capacitance ranges
} Transistor features: 

} gate poly length
} number of fingers
} number of fins
} multiplier

143

Reference: H. Ren, G. F. Kokai, W. J. Turner and T. Ku. “ParaGraph: Layout Parasitics And Device Parameter Prediction Using Graph Neural Networks”, 
Proceedings of the ACM/IEEE Design Automation Conference, pp. 1–6, 2020

143

ParaGraph: Layout Parasitics and Device Parameter Prediction with GNNs

} Simulation errors between pre-layout predictions and post-layout on 67 circuit 
metrics in the testing circuits:

144

} GCN-based model achieves an average prediction R2 of 0.772 (110% better than XGBoost)
} Average simulation errors from over 100% with designer’s estimation to less than 10% 

Reference: H. Ren, G. F. Kokai, W. J. Turner and T. Ku. “ParaGraph: Layout Parasitics And Device Parameter Prediction Using Graph Neural Networks”, 
Proceedings of the ACM/IEEE Design Automation Conference, pp. 1–6, 2020
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Outline of Presentation
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Case Study 4: Transfer Learning for IC Design Migration

} Challenge and opportunity: need of porting analog design between technology nodes

} Apply transfer learning for reuse of characterized circuit data and models
} Assume data is available from a source domain to predict in a target domain
} Benefits:

} Faster training 
} Improved model performance 
} Requirement of less data

} Circuit Applications:
} Migrate designs (sizing, placement, routing) across circuit topologies
} Migrate designs across different technology nodes

146
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Traditional Supervised Learning
147

Dataset 1 Learning Task 1

Dataset 2 Learning Task 2

} Sample data in the search space of the given problem 
} Train independent machine learning models for each problem

} Challenge: 
} Circuit data is often proprietary
} Acquiring sufficient data for each circuit task is costly or infeasible

147

Transfer Learning with Domain Adaptation

} Freeze a variable number of layers of the 
prior models

} Retrain with a smaller dataset in the 
target domain/node

148

Dataset 1 Learning Task 1

Dataset 2 Learning Task 2

Prior Knowledge
(Pre-trained models)
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Transfer Performance Modeling across Technology Nodes for the Same Circuit 

} Transfer learning is applied on models trained in 180nm for the performance 
modeling of an op-amp in 65nm

} Transfer learning significantly improves the sample efficiency for circuit performance 
modeling with simulation-based sizing data
} Up to 50% improvement in MAE on test data

149

Reference: Z. Wu and I. Savidis, “Transfer Learning for Reuse of Analog Circuit Sizing Models Across Technology Nodes,” 
Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1–5, 2022

149

Comparison of Sample Efficiency for Training of the Gain Predictor
150

} Standalone training requires 1000
training samples to achieve test error 
of 0.076

} Transfer learning requires 100 samples 
to achieve test error of 0.07

0.14

0.12

0.10

0.08

Base     f=0       f=1       f=2       f=3      f=4      f=5       f=6

Reference: Z. Wu and I. Savidis, “Transfer Learning for Reuse of Analog Circuit Sizing Models Across Technology Nodes,” 
Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1–5, 2022

f: number of frozen layers
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Predictive Scaling of ML models: Analogy with GPT 4

} Large training runs do not allow fine-grained model tuning
} Objective: predict performance of ML models as a function of dataset size
} Loss of language models well approximates power laws in terms of compute used 

to train the model
} Loss(C) = α∗ 𝐶𝑜𝑚𝑝𝑢𝑡𝑒>

151

Reference: GPT4 Technical Report

151

Predictive Scaling for ML-based Circuit Models 

} Currently no standards on circuit 
data for analog EDA
} Data is generated by each group 

with proprietary PDK for various 
design applications

} Predictive scaling is needed to 
apply ML for analog EDA in scale
} Assurance and budget control of 

ML-based circuit models

152

Train models at varying 
(small) dataset size

Power law fit to predict model 
performance vs dataset size

Output dataset size 
needed for the target 
model performance

Adopt and train model

Cost within 
budget?

No

Yes

Reset target model 
performance
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Transfer Performance Modeling across Analog Topologies
153

ML Models for
Knowledge Transfer

Characterized
Full data 

Unseen 
No/little data

} Vision: If learning on multiple topologies 
simultaneously is allowed, pretrain 
generalized models for analog circuits 
} CircuitNet: ImageNet of analog circuits

153

Is Transferring Predictions Across Analog Topologies Even Possible?
154

Source: xkcd.com

One Analog Topology

ML Model
Under Training  
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Challenges of Transferring Predictions Across Analog Topologies

} Each analog topology represents a unique mapping from the design space to performance 
space
} Includes tradeoff considerations

} Traditional learning algorithms only work for a single topology if trained on device features 
} Different topologies      different number of devices      different feature dimensionality

} Therefore, models usually do not apply if circuit topology changes
} Requires new data for a new circuit

} To transfer across topologies, first need models that learn topological information

Solution: Train Graph Neural Networks on Circuit Graphs

155

155

Transfer Performance Models Across Four Op-amp Topologies
156

} Four op-amp topologies
} Two-stage
} Three-stage
} Telescopic cascode
} Folded cascode

} Device Features:
} Transistor sizing
} Transistor type
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Transfer Learning in Two Design Scenarios
157

} Scenario 1: Zero-shot learning
} No data provided for the target topology
} Apply GNN

} Scenario 2: Few-shot learning
} Small dataset of 100 points provided for the target topology
} Apply GNN and transfer learning

157

Transfer Performance Modeling by Applying GNN and Transfer Learning 

} Train GNN for three amplifier topologies, test on the fourth topology
} Zero-shot learning: GNNs provide coarse estimates of the circuit performance 

} GNNs result in less test errors than the baseline ANNs for 14 of the 20 cases
} Few-shot learning: fine-tuned GNNs with transfer learning provide an average 

reduction of 70.6% in test error (RMSE) as compared to ANN models 

158

* Scenario 1 / Scenario 2

Reference: Z. Wu and I. Savidis, "Transfer of Performance Models Across Analog Circuit Topologies with Graph Neural Networks," Proceedings of the ACM/IEEE Workshop 
on Machine Learning for CAD, pp. 159-165, 2022
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Benefits of Applying Transfer Learning for the Modeling of Analog Circuits in Past Works

} Transfer learning produces higher FOM 
solutions when reinforcement learning is 
applied for sizing

159

Reference: 1. H. Wang, et. al., “GCN-RL Circuit Designer: Transferable Transistor Sizing with Graph Neural Networks and Reinforcement Learning,” Proceedings of the 
IEEE/ACM Design Automation Conference, pp. 1–6, 2020 
2. Y. Li et al., "A Customized Graph Neural Network Model for Guiding Analog IC Placement," Proceedings of the IEEE/ACM International Conference On Computer 
Aided Design, pp. 1-9, 2020

} Transferred knowledge of cascode OTA 
improves model performance in predicting 
placement quality of current mirror OTA
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Future Directions

} Improve reliability, robustness, and interpretability of ML models for analog EDA
} More mature and standardized flow of analog synthesis 

} Strong AI for analog synthesis
} Current ML models identify correlation instead of causality among data

} Learning causality requires expert knowledge
} Ideal if AI understands human design thinking while discovering new rules for the synthesis of 

analog circuits
} Meta-learning

} Learning what to learn
} Learn parameter values for base (pre-trained) models for circuit tasks

} Learning which model to learn
} Auto select the ML and optimization algorithms best suited for a given circuit task

} Learning how to learn
} Auto hyperparameter tuning of ML models and generation of pipeline for analog EDA

¨Parsing of standard circuit files (SPICE, DSPF, LEF, DEF...)

161
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Summary of AI-driven Analog EDA

} ML is applied to improve, not replace heuristics in analog synthesis flow
} Heuristics with procedural synthesis still dominate latest analog EDA tools 

} Benefits brought by ML for analog EDA:
} Reduced simulations required, reduced turnaround time
} Design space exploration
} Prediction of parasitic impedances, reliability and variability
} Guide optimization or direct generation of schematic and layout design
} Migration and reuse of past designs 

} Requirement on ML-based circuit models: 
} Sample efficiency
} Generalization
} Transferability

} Optimization is backbone of automated analog design flow
} Need to handle higher device count and more restrictive design rules

162
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Conclusions
163

Reference:  A. B. Kahng, “Machine Learning Applications in Physical Design: Recent Results and Directions”, 
Proceedings of the International Symposium on Physical Design, pp. 68-73, 2018

} EDA tools are like autonomous 
vehicles
} Currently, driver control/attention is 

still required
} Analog EDA tools are like 

autonomous vehicles to be driven in 
more challenging road conditions

} Level of automation will keep rising
} More collaborations needed between 

circuit design, academia and 
industry 

163

A Remembrance of the Past: Timeline of (Digital) EDA Development
164

60,70's

'Age of Gods'
Invention

1964: DAC 
1971: GDS format
1978: GDS-II by Calma
Earliest P&R tools 

80,90's

'Age of Heros'
Implementation

ASICs
Mentor Graphics, 1981
Synopsys, 1986
Cadence,1988 
Verilog, 1984

00's

'Age of Men'
Integration

SoCs
Technical innovation slowdown
Vendor market maturing
Less risk-taking

2010-now

'Age of Learning '

New devices (FinFETs, 
memristors)
2.5D, 3D integration

Reference: A. Sangiovanni-Vincentelli, "The Tides of EDA", IEEE Journals & Magazine, Vol. 20, No. 6, pp. 59-75, 2003
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http://ice.ece.drexel.edu
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